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Introduction

The advent and the subsequent continuous refinement of genome sequencing technologies3 40 42

have made it possible to have a large sampling of many living organisms, but at the same time have
raised the necessity for introducing mechanisms of compression, or at least encoding, able to allow
e↵ective storage and transfer of huge collections of genomics data.

In 2010, the 1000 Genomes Project 34 35 2 led to the acquisition of the genome of 1000 individuals
belonging to the species homo sapiens and from there the available data13 have increased with expo-
nential speed, due to the combination of significantly lower cost and increased speed of sequencing.

The target for the cost of 1000$ for accurate sequencing a human genome will be matched shortly,
allowing researchers and clinitians to perform sequencing more and more often. Unfortunately, the
pace at which storage and communication resources are evolving is not enough, and the genomic
data centers are being flooded with data; it is the so-called “data deluge”4.

The Sequence Read Archive(SRA)i 26 21, which houses a large portion of the World’s public se-
quencing data, is rapidly expanding (Figure 1) and presently comprises 62 petabases of DNA and
RNA sequences.
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Figure 1: Sequence Read Archive (SRA) growth over the years.

iFor a quick overview see https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?
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ii INTRODUCTION

This is a problem for both data storage and transmission, preventing team collaboration and long-
term data storage, which is required for reproducibility of published results.

Data centers are frequently employed as a solution, but they come at a high expense in terms of
storage capacity and transmission bandwidth.

The solution commonly adopted for ease of use and processing speed is to employ general-purpose
compressors, such as GZip or Bzip2. This approach, however, does not take into account the struc-
ture of the data coming from Next Generation Sequencing and therefore does not achieve particu-
larly e↵ective results for compressing genomic data. It is in this context that it becomes crucially
important to employ research e↵ort in designing tools that can leverage on the features of NGS data
to achieve the best performance.

The standard output produced by NGS sequencing machines consists into ASCII-based text files,
called FASTQ16, which can contain up to millions of records each of which represented by 4 lines:
one header identifying the record, the second containing the nucleotide sequence, the third acting as
a separator, and the fourth representing the confidence with which the individual bases were called
by the machinery. Each record is called read.

Another common format used for representing genomics sequences is the FASTA file (or, more
commonly multiFASTA file), that is ASCII-based file that contains 2 elements for each record: one
with an identifier and one with the nucleotide sequence.

In uncompressed form, storing raw, whole-genome, high-coverage sequencing data for a single
human can easily surpass 200GB. The majority of DNA sequencing analysis (for example, in the
context of precision medicine) relies on comparing the variations of the sequenced genomes to a
known reference genome, to which the raw reads in the FASTQ(A) file are aligned in order to
assess these variations.

So far we have explained how to store the entire genome of an individual as a set of reads, but
this is not the only way. The sequences of nucleotides identified by the sequencing machinery can
be assembled, through the process named assembly: reads are aligned in order to form the whole
genome of an individual. In order to assemble DNA or RNA, every single read needs to be placed
in the correct position with respect to the whole helix and this procedure allows the assembled file
(in FASTA format) not to store the quality score.

As already presented, these files are commonly compressed with GZIP, a general-purpose compres-
sion program that is rather fast and widely used but does not take advantage of file-specific features.

Fast Packing of Large Genomic Dataii is the proposed solution to this problem that has been re-
flected into a tool for encoding genomic files, such as FASTQ and FASTA, and explaining its func-
tioning it the main objective of this thesis.

This manuscript is divided into 5 chapters, preceded by a brief warm up (Chapter 1), necessary to
understand in detail what is exposed. More in detail, we will discuss topics such as the sequencing

iiThe source code of the tool is freely available at https://github.com/magemma/FPLGeD tool

https://github.com/magemma/FPLGeD_tool
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of DNA fragments, we will see what are the most commonly used techniques for this purpose in the
past and today, and we will discover what are the basic steps to convert an ensemble of reads into
the assembly of the entire genome of an individual.

In the central part of the first chapter (Section 1.2), we will present what has been proposed in the
state of the art as a solution to the problem of reducing the space occupied in storing nucleotide
sequences. In particular, we will see that compression methods belong to 4 categories and highlight
their pros and cons, and then move on to a definition of the data we aim to compress thanks to
FGPLGeD (Section 1.3), that are FASTQ(A) files.

The core part of this dissertation begins with Chapter 2, where we present our approach to com-
pressing FASTQ(A) files, through 3 di↵erent lossless algorithms, one for each row of the FASTQ
file. One may ask why only three algorithms if each sequence stored in a FASTQ file is decoupled
into 4 rows and the reason is that the third row (plus line) is often a copy of the header. For FASTA
files, only two algorithms out of the three are used, since these files do not contain information about
the per-base quality of the stored sequences.

After detailing the algorithms employed for compression, we present in Chapter 3 an experimental
evaluation of the performance of FPLGeD on a dataset representing di↵erent sequencing scenarios
and strategies. For the sake of explanation, Chapter 3 is divided into two parts, the first one describes
the data used to test our tool and compares it with the state of the art, the second one shows the
significant improvement made by FPLGeD in the compression of nucleotide sequences stored in
both FASTQ and FASTA format. In fact, our tool proves to be faster than its competitors and
also more performing in terms of compression ratio on long reads generated by third generation
sequencing, which is, in our view, the technology that will be more present in the near future.

Conclusions in Chapter 4 summarize the achievements of FPLGeD and discuss new directions about
future work on this topic.
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Chapter 1

Background

In order to compare algorithms and describe our FPLGeD, we need to introduce some terminology.
Usually, the input of a compression algorithm is a sequence of symbols from a given alphabet. In
the case of the compression of DNA/RNA sequences, the alphabet is made of characters that come
from the four possible nucleotides (A, T/U, G, C) (Where thymine ‘T’ is replaced by uracil ‘U’ in
RNA sequences).

Definition 1 (Nucleotide). A nucleotide is one of DNA and RNA’s structural components, or build-
ing blocks. A nucleotide is made up of a base (one of the chemicals: adenine-A, thymine-T, uracil-U,
guanine-G, or cytosine-C), as well as a sugar molecule and a phosphoric acid molecule. Thymine
and Uracil are alternative to each other. The nucleotides belong to two groups: the pyrimidines C,
T, and U each have a single nitrogen-containing ring; and the purines A and G with two nitrogen-
containing rings.

1.1 Sequencing and Assembling

The procedure of determining the order of nucleotides (Definition 1) in a strand of DNA is known
as DNA sequencing. Single-stranded DNA bases form pairings with the bases on the other helix
in double-stranded DNA. Hydrogen bonds develop between complimentary bases, resulting in this
pairing.

Basically, sequencing technologies allow a DNA sequence to be transformed into a digital file.

The Sanger technique38 was introduced in 1977 and is regarded as a first generation sequencing
technology (FGS). It was able to read fragments with a maximum length of 1000 nucleotides, at a
quite high cost and with high precision: for example, the first human genome sequencing took 15
years and $100 millions to sequence human DNA with this technique22.

Until the introduction of the so called high-throughput next generation sequencing, that opened
new perspectives for genome exploration and analysis, the only sequencing technology available to
biologists was Sanger’s.

1



2 CHAPTER 1. BACKGROUND

Roche’s 454 technology29 introduced second generation technologies (SGS) in 2005, and they were
commercialized as technologies capable of creating sequences at a very high throughput and at a
significantly lower cost.

t1977

Sanger’s method

2005

Roche’s 454 Tech

2006

Solexa’s Genome Analyzer

2011

Illumina’s HiSeq

2012

Nanopore’s GridION

2015

PacBio’s SMRT

Figure 1.1: A timeline of the major sequencing technologies.

Solexa’s Genome Analyzer was launched as a competitor against Roche’s technology in 2006. In
less than a year, Illumina (a company involved in gene and protein analysis) acquired Solexa and
gave birth to SGSs, such as HiSeq and MiSeq.

Nowadays, Illumina’s HiSeq 2500/3000/4000 are the most commonly used sequencing techniques,
due to their high reliability and low cost.

Let us describe the functioning of Illumina’s sequencing machinery.
This sequencing process consists of three phases:

˙ Sample preparation;

˙ Cluster generation;

˙ Sequencing.

The first phase, called sample preparation (Figure 1.2(a), Figure 1.2(b), Figure 1.2(c)), be-
gins with a fragmentation phase that has the aim of splitting the DNA into smaller portions
that begin and end with a special sequence (called adapter) that matches a special binding site.

Those binding sites (called primers) are placed onto a glass panel called flowcell that is used
to perform the amplification of fragments and their clusterization.

A single fragment creates a bond with the primer corresponding to the first adapter (Fig-
ure 1.2(d)) and it is bent to match its second adapter to the second primer on the flowcell
(Figure 1.2(e)). A complementary strand is generated (Figure 1.2(f)) and then denatured to
form two pairwise-complementary strands (forward and reverse, as depicted in Figure 1.2(g)).

The process is repeated over and over, resulting in clonal amplification from which reverse
strands are washed o↵ and all the equal sequences are clustered.

The core part of this technology is the sequencing by synthesis, where each base is excited
using a light source and this leads to the emission of a fluorescent signal that gives birth to the
digital read (Figure 1.2(h)).
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Figure 1.2: Illumina’s DNA sequencing.

The second-generation of sequencing technologies, as Illumina, have revolutionized the analysis of
DNA and have been the most widely used compared to the first generation of sequencing technolo-
gies.

However, the SGS technologies generally require PCR amplification step which is a long procedure
in execution time and expensive in sequencing price. To remedy the problems caused by SGS
technologies, scientists have developed a new generation of sequencing, called third generation
sequencing (TGS). The most common sequencing approach of this TGS is the single molecule
sequencing (SMS), that allows the sequencing of a single cell, without need of any replication. It is
important to stress that SMS allows to sequence the RNA of a single cell, and this procedure can be
used in order to check if a tissue is healthy or cancerous. The two most famous sequencing platforms
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in TGS are Pacific Biosciencesi and the MinION sequencing from Oxford Nanopore technology.

PacBio’s sequencer uses the same fluorescent labeling as the other technologies, but instead of
executing cycles of amplification nucleotide, it detects the signals in real time.

The MinION30 from Oxford Nanopore Technologies was released in 2014. It is a mobile single-
molecule sequencing tool that measures four inches in length and is connected by a USB 3.0 port
of a laptop computer (depicted in Figure 1.3). One of MinION’s great features (in addition to its
portable size) is its speed. A whole genome’s sequencing can take less than 60 minutes.

Figure 1.3: Oxford Nanopore’s MinION.

So far, we discussed the functioning of various sequencing techniques, but we still need to explain
how the reads can be combined into longer sequences.

The process of finding the best alignment of the reads into longer continuous regions is called
assembly15 17. The average microbial genome is about 2m basis pairs, but the sequencing technology
can output from 100 bases to 50000 bases. These reads can be assembled in a hierarchical fashion:
we start from reads, we assemble reads into contigs and, provided to be able to guess the orientation
of contigs, we cal build sca↵olds (see Figure 1.4).

Reads

Contigs

Scaffolds

Figure 1.4: The general steps of de novo assembly.

iFor reference, see https://www.pacb.com/

https://www.pacb.com/
https://www.pacb.com/
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Under some conditions of the mapping information, sca↵olds can be combined to form chromo-
somes.

Among individuals of the same species, it may occur that some parts of their genomes di↵er. These
di↵erences are called alternate loci.

Definition 2 (Alternate locus sca↵olds). In a mostly haploid assembly, an alternate locus sca↵olds

is a sequence that is an alternate representation of a genomic area.
As a result, di↵erent loci are supplied for genomic areas that demonstrate significant population
variability and are included in a haploid representation of the genome.

After a brief introduction of bioinformatics fundamentals, we are ready for the next Section in which
we present what has been achieved through research in the past years for compressing nucleotide
sequences.

1.2 State of the Art

Many compression strategies have been proposed in response to the growing quantity of (re-)sequenced
genomes. In general, there are four types of compression algorithms: naı̈ve bit encoding, dictionary-

based encoding, statistical encoding, referential encoding.
In the following paragraphs, we discuss all these techniques in detail.

1.2.1 Naı̈ve bit encoding

Naı̈ve bit encoding technique18 11 31 exploits fixed-length encodings of two or more symbols in a
single byte.
This kind of algorithms are lossless and they exploit regularities in the files (e.g. Nsira11 identifies
and handles palindromic strings) It is evident that using eight bits (or 256 di↵erent states) to encode
four di↵erent bases is a waste of space. With two bits, four bases can be simply encoded (or four
states). As a result, bit encoding of four bases into one byte is a straightforward compression
technique for DNA sequence data.

An example of naı̈ve bit encoding uses the replacements A ! 00, C ! 01, G ! 10, T ! 11,
where each symbol in the input is replaced by two bits. Current CPU designs o↵er significantly
enhanced bit operations, allowing on-the-fly encoding of DNA sequence data with only two bits.
In Section 2.4, we will see how FPLGeD uses a simple yet powerful solution for encoding the
nucleotide sequence such that also the case (upper/lower) can be represented e�ciently.

1.2.2 Dictionary-based encoding

Dictionary-based or substitutional compression techniques substitute repeated substrings with ref-
erences to a dictionary (a collection of previously encountered or predefined common strings) that is
created in real time or o✏ine. The state-of-the art pattern-based dictionary approach is represented
by Larsson et. al.25 and Shibata et.al41.
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Dictionary-based encodings are compression algorithms that are largely una↵ected by the input
data’s specific properties. The overall strategy is to use references to a dictionary to replace repeated
data elements (in this case, DNA subsequences) in the input. Bookkeeping previously recurring
sequences is frequently used to find repetitions. During the decompression process, the dictionary is
rebuilt at runtime, therefore, the dictionary does not need to be stored with the compressed data. An
example of a dictionary-based algorithm could be this mapping AAA! 1, CGT ! 2, TGAG ! 3,
and so on and so forth. Therefore the sequence AAATGAGAAACGT can be encoded as 1312.

Nowadays, the most famous examples of such technique are Lempel-Ziv-based compression algo-
rithms46.

FPLGeD makes use of dictionary-based technique for encoding the quality string, namely a string
that has the same length of the read and stores in each character the confidence of reading that
particular nucleotide.

1.2.3 Statistical encoding

Statistical or entropy encoding techniques use the input to generate a probabilistic model. This
model predicts the following symbols in the sequence based on partial matches of subsets of the
input. High compression rates are attainable if the model consistently predicts a high probability for
the following symbol, i.e. if the forecast is accurate.

Cleary and Witten’s solution14 belongs to this group, applying arithmetic coding and Markov mod-
els to the initial nucleotides sequence. The work of Duc Cao et.al8 outperforms the competitors in
compression ratio, keeping a practical encoding time by means of a panel of experts that suggest
the following nucleotide in the sequence, based on the previous occurrences.

Statistical algorithms generate a statistical model of the incoming data, which is usually expressed
as a probabilistic or prefix tree data structure. Shorter codes are used for sub-sequences having a
greater frequency in the genome. As a result, statistical compression methods may be thought of
as a subset of dictionary-based schemes that combine recurrence detection and reference encoding
into a single algorithm.

The rate of compression is determined by the model’s quality as well as the presence of observable
patterns in the input. Hu↵man encoding19 is one of the most widely used and well-understood
statistical encodings. It employs a variable-length code table constructed from calculated probability
for each conceivable symbol’s occurrence. Leaf nodes correspond to symbols, while edges are
labeled with probabilities and the resulting codes, forming a binary tree.

The resultant Hu↵man code table must be stored in addition to the compressed stream, and so must
be factored into the compression ratio calculation. This storage expense can be reduced by sharing
the same code table across many streams. Large alphabets with an uneven distribution of utilized
characters benefit Hu↵man encoding in general1.

More involved applications of statistical encoding8 5 43 exploit statistical properties and repetition
within sequences.
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1.2.4 Reference-based encoding

Referential or reference-based encoding is a technique recently emerged. These methods replace
large substrings of the input with references to another string, similarly to dictionary-based ap-
proaches. These references, on the other hand, point to external sequences that are not part of the
input data to be compressed. Furthermore, whereas dictionaries are often enlarged throughout the
compression process, the reference is usually static.

The fundamental concept behind reference-based encoding is to record just the di↵erences between
a genome sequence and a reference sequence, with the discrepancies being located using absolute
or relative coordinates. Various encoding methods can be used to encode these sites and their
di↵erential versions into binary strings, as studied by P. Baldi et. al. in their Data Structures and
Compression Algorithms for Genomic Sequence Data7.

Referential compression strategies are a straightforward way to read compression since aligning
reads to a reference genome is the first step in most analytic processes.

While storing a sequence ‘s’ of N characters (N + 1 if we consider the terminating character \0)
takes (N + 1) · 8 bits, we represent the i-th sequence si by its address ai in the reference genome and
save several bits. Let us explain the procedure a bit more in detail.

The length of the i-th sequence li must additionally be given if the length of each sequence is not
set and known in advance or included in the file header. If the match is not perfect, di↵erences in
the genomic sequence must be recorded, along with their address and kind. Let us suppose to have
a short sequence with a beginning point matching location 1500 in the reference genome, a length
of 25 nucleotides, and a C substitution in position 3 may be recorded as (1500, 25, 3C).

This structure, is easily compressed using tools like DNAzip12.

As mentioned in the previous paragraphs, FPLGeD is a genomic data compression tool structured
in 3 sub-procedures using bit encoding and dictionary mapping techniques, depending on the type
of data under consideration. In the section below, we present the file types that FPLGeD deals with
compressing and highlight their characteristics.

1.3 The input data

The aforementioned genome information is stored in mainly two formats: FASTA and FASTQ.
In this section, we explain more in detail the format of such files.

Definition 3 (FASTA file). In bioinformatics and biochemistry, the FASTA format (shown in Fig-
ure 1.5) is a text-based format for representing either nucleotide sequences or amino acid (protein)
sequences, in which nucleotides or amino acids are represented using single-letter codes. The for-
mat also allows for sequence names and comments to precede the sequences.
The structure of FASTA files is the following:

w Line 1 (Header) begins with a ‘>’ character and is followed by a sequence identifier and an
optional description of the sequence itself;
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w Line 2 (Sequence) is the raw sequence letters.

In this study, we concentrate on sequences of nucleotides. The reason why we chose to formulate
the problem in such a way as to compress only sequences of nucleotides and not of amino acids is
that the first type of file is far more widespread and is in a sense to be considered as another way to
express amino acids and proteins: in fact it is from DNA that proteins and amino acids are obtained,
thanks to the translation of mRNA.

A sequence was not written on a single line in the original format; instead, it was represented as a
series of lines, each of which was no more than 120 characters long and frequently no more than 80
characters long. Most users at the time relied on Digital Equipment Corporation (DEC) VT220 (or
comparable) terminals that could show 80 or 132 characters per line, hence this was most likely to
allow for pre-allocation of fixed line sizes in software. In 80-character modes, most people favored
the larger font, so it became fashionable to use 80 characters or less (typically 70) in FASTA lines.
A regular printed page is also 70 to 80 characters wide (depending on the font). As a result, 80
characters became the standard.

> c h r 2 0

g g g A C C N N N N g g g a a N N N N N N N N a t c c t t … N N N G G G g g g a a g g c g t a a a a

N N N N N N N N N N N N N N N G G G A C C g g g g g g a a … g g a a g g c g t a a a a a t c c t t g

G G G A C C g g g g g g a a N N N N N N N N N N N N N N N … a a g g g a c t t g A C C g g N N N a t

a a g g g a G G N N N N G g c t t g A C C g g g g g g a a … N N N N N N N N N N A C C g g N N N a t

Figure 1.5: In dark blue, the header of the FASTA file and in light-blue, the sequence of
nucleotides split in multiple lines of 80 characters each.

FASTA files are possibly made of multiple sequences, and this enables for storing an entire genome
on a single file. In terms of file format, we get that the two lines with the structure shown above are
repeated multiple times across the file.

Definition 4 (FASTQ file). FASTQ format (shown in Figure 1.6) is a text-based format for storing
both a genomic sequence ‘s’ and its corresponding quality scores. Both the sequence letter and
quality score are each encoded with a single ASCII character for brevity.
A FASTQ file uses four lines per sequence, as shown in Figure 1.6 and explained below.

w Line 1 (Header) begins with a ‘@’ character and is followed by a sequence identifier and an
optional description (like a FASTA title line);

w Line 2 (Sequence) is the raw sequence letters;

w Line 3 (Plus) begins with a ‘+’ character and is optionally followed by the same sequence
identifier (and any description) again;

w Line 4 (Quality) encodes the quality values for the sequence in Line 2, and must contain the
same number of symbols as letters in the sequence.
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@ S R R 0 0 1 6 6 6 . 1 0 7 1 1 1 2 _ S L X A - E A S 1 _ s _ 7 : 5 : 1 : 8 1 7 : 3 4 5 l e n g t h = 3 6

G G G T G A T G G C C G C T G C C G A T G G C G T C A A A T C C C A C C

+ S R R 0 0 1 6 6 6 . 1 0 7 1 1 1 2 _ S L X A - E A S 1 _ s _ 7 : 5 : 1 : 8 1 7 : 3 4 5 l e n g t h = 3 6

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 9 I G 9 I C

(a) FASTQ with “plus line”

@ S R R 0 0 1 6 6 6 . 1 0 7 1 1 1 2 _ S L X A - E A S 1 _ s _ 7 : 5 : 1 : 8 1 7 : 3 4 5 l e n g t h = 3 6

G G G T G A T G G C C G C T G C C G A T G G C G T C A A A T C C C A C C

+

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 9 I G 9 I C

(b) FASTQ with empty “plus line”

Figure 1.6: In dark blue, the header of the FASTQ file and the plus line; in light-blue, the
sequence of nucleotides; then, in a lighter shade of blue, the quality values.

As already stressed for FASTA files, in a FASTQ file are stored multiple reads, which means that
the four lines with the structure shown above are repeated multiple times across the file.
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Chapter 2

FPLGeD: Fast Packing of Large

Genomic Data

In this Chapter, we explain in detail the functioning of FPLGeD (Fast Packing of Large Genomic
Data) compressor, after introducing some preliminary definitions on the subject.

2.1 Preliminaries

When we talk about compression, we refer to two macro areas: lossless compression where it is
always possible to reconstruct the complete original input from the compressed output, as opposed
to lossy compression where a limited degree of divergence between input and output is possible.
In biomedical applications every single base (nucleotide) is important, therefore from now on we
will focus only on lossless compression tools, and we will define the performance in terms of space
saving as

Definition 5 (Compression Ratio). We term compression ratio the ratio between the original size
and the compressed size:

compression ratio =
soriginal

scompressed

We say that a compression scheme allows random access, if arbitrary positions of the input stream
can be accessed without decompressing the whole stream. Splitting the input sequence into fixed-
size blocks, for example, can permit random access.

Definition 6 (Run Length Encoding). Run Length Encoding (or RLE) is one of the most basic
forms of compression. RLE is a fundamental data compression method that turns a string of identi-
cal values into a code that includes the character and the length of the run. The greater the number
of identical values, the more values may be compressed.

11
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Example:
A first trivial example of the functioning of RLE is the translation of AAA into 3A, where the
3 is the run (indicating that this specific character was stored 3 times in the original data), and
the A is the run-value (indicating, that the repeated character is A).
Let us move to a more involved example: s = BBBBAAOPPOOOOP.
RLE(s) = 4B 2A 1O 2P 4O 1P, allowing s to be stored using 12 characters instead of 14. In
this case, we saved 2 characters compared to the original string. At decoding time, we read
from the encoded data the run and then the run-value. Subsequently, we store the run-value
for run-times until we decoded and by that restored the original data.

˙ 4B! BBBB

˙ 2A! AA

˙ 1O! O

˙ 2P! PP

˙ 4O! OOOO

˙ 1P! P

After this procedure, we get back to the initial string: BBBBAAOPPOOOOP.

From this example, we can glimpse one of the downsides of RLE: two characters in a sequence (like
the AA or the PP) never create compression, as the encoded data is of the same size as the original
data. Moreover, single characters (like the first O and the last P in the example above), that occupy
only one byte in the original data, also get an additional run during the encoding-process. In the
latter case, the encoded data becomes twice the size of the original.

Conversely, it is easy to observe that a sequence consisting only of multiple repetitions of the same
character exploits this techniques at its best.

In order to make a wise use of this encoding technique, in Section 2.5 we will present a mixed
approach that combines RLE encoding with a plain encoding. In particular, in Section 2.5.2 and
Section 2.5.4, we will use RLE only if the number of repeated characters reaches a certain threshold.

2.2 FPLGeD

The problem that FPLGeD solves is reducing the disk space occupied by files that store possibly
large sequences of nucleotides without loss of information, by means of highly optimized encoding
techniques.

In particular, our tool allows the encoding of two di↵erent kinds of files, FASTA and FASTQ (Def-
inition 3 and Definition 4), and such procedure is held by two or three sub-tasks respectively.



Chapter 3

Experimental Results

In the previous chapter, we described in detail the operation of our FPLGeD; it will be in this second
part of the discussion that we will comment on the experimental results obtained on a large dataset
of genomic data and compare them with the theoretical performance.

We employed the state-of-the-art competitors, GZip (the most frequently used FASTQ compres-
sor32), and SPRING1410 for the evaluation. We decided not to include other good compressors
like FaStore37 and Minicom28 because SPRING14 outperforms them both in terms of time and
compression ratio32.

This chapter is divided into three parts: the first serves as an introduction to the data under con-
sideration and is concerned with describing and documenting the dataset. In the second section
(Section 3.2) we report on the performance of the compared methods on FASTQ files, while the last
section (Section 3.3) is left to the analysis and comparison of our algorithm on FASTA files.

3.1 Dataset

The performance of FPLGeD was tested and compared on a variety of publicly available sequence
datasets mostly downloaded from NCBIi 39.

Let us first describe the dataset:

w 4 representative samples (i.e. the biggest) from a wide collection of 61 runs of small RNA-seq
(miRNAs) described in44 downloaded from NCBI trace (study accession number SRP1993503ii).
The samples consist of the same human brain tissue, in various concentrations, prepared with
4 di↵erent protocols and sequenced with an Illumina HiSeq-3000. In particular

• Clontech5 Sample5 batch1.fastqwas prepared using the Clontech SMARTer smRNA-
Seq Kit for Illumina (Clontech);

iNCBI home page: https://www.ncbi.nlm.nih.gov/assembly
iihttps://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?study=SRP199350
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• Illumina4 batch1.fastqwas prepared with the Illumina TruSeq Small RNA Library
Prep Kit (TruSeq);

• NEB12 batch1.fastq was prepared using the New England BioLabs Next Multiplex
small RNA kit (NEB)iii ;

• NEXTFlex batch2.fastq was prepared with the Bioo Scientific NEXTflex Illumina
Small RNA Sequencing Kit v3 (NEXTflex)iv;

w ERR194147 is a paired-end sequencing of the genome of the individual NA12878 (i.e. the
mother) belonging to the CEPH/UTAH PEDIGREE shown in Figure 3.1)33. Sequencing was
performed using Illumina HiSeq 200027 9 and consists of three files:

• ERR194147 1.fastq contains the read1;

• ERR194147 2.fastq contains the read2;

• ERR194147 contains reads for which the pair is not present;

w SRR10407349.fastq contains reads of non-coding RNA of homo sapiens. The reads present
in this file are obtained using Illumina MiSeq system;

w SRR13632831.fastq is a FASTQ file containing the RNA sequencing of a fish named brook
trout (Salvelinus fontinalis) and are obtained making use of Illumina HiSeq 2500;

w SRR17333571.fastq contains the RNA reads of a plant, the Chinese ginseng (panax schin-
seng). SUch reads are obtained through Illumina NovaSeq 6000 technology;

w SRR8311266.fastq stores the same data of SRR10407349.fastq, but this time the reads
come from Illumina HiSeq-2500 technology;

w nanopore-NA12878.fq contains the whole genome sequencing of sample NA12878, where
the sequencing was performed using Oxford Nanopore Technologies (ONT) MinION long-
read sequencer6 20. With respect to Illumina sequencing (second generation technology), the
length of the reads is much higher, although Illumina sequencing is more accurate in terms of
quality of the calls;

w pacbio-k3-NA12878.fq store the whole sequencing of the same individual NA12878, but
this sequencing is performed using PacBio technology36. Similarly to Nanopore sequencing,
PacBio belongs to third generation sequencers and produces longer, although less accurate,
reads with respect to Illumina technology.

iiiFor further readings on NEB, https://international.neb.com/tools-and-resources/interactive-tools
ivFor reference, see https://perkinelmer-appliedgenomics.com/home/products/library-preparation-kits/small-rna-

library-prep/nextflex-small-rna-seq-kit-v3/
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w GCF 000001405.26 GRCh38 genomic.fna contains the reference genome, assembled at
chromosomic level of a human being (homo sapiens). This build has a total of 207 alternate-
locus-containing regions associated with a total of 473 alternate locus sca↵oldsv;

w GCF 000001635.27 GRCm39 genomic.fna stores the reference genome, assembled at chro-
mosomic level, of zebrafish (danio rerio). Let us stress that the zebrafish is widely used in
bioinformatics and in genomic research mainly because they have a reasonably similar ge-
nomic structure to humans (they share 70% of genes with us) and the 84% of genes known to
be associated with human disease have a zebrafish counterpart.
Moreover, they are cheaper to maintain with respect to mice. In this file as well, there are
stored also the alternate loci for a total of 607 alternate-locus-containing regions associated
with a total of 1917 alternate locus sca↵olds;

w GCF 000002035.6 GRCz11 genomic.fna contains the reference genome, assembled at chro-
mosomic level, of house mouse (mus musculus). Just like the other two reference genomes,
alternate loci are present, although in the small amount of 3 and with 102 alternate locus
sca↵olds;
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Figure 3.1: The family tree of CEPH Family 1463. In this figure, males are represented as
squares and females as circles. Individual NA12878 (mother) is marked with the symbol .

As far as the technical details are concerned, let us group the files into Table 3.2 and Table 3.1.

vThe human genome reference sequence was formerly represented as a single consensus sequence known as the
golden route 23. Several chromosomal regions have such a high degree of diversity that a single nucleotide cannot ef-
fectively represent them 24 47 45. As a result, the GRC began to give alternate sequences for chosen variation regions by
including alternate locus sca↵olds (for the definition, see (Definition 2).
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Sample Name Size(KB) Type Method Instrument Nreads Rlength

np-NA12878 183 238 556 DNA ONT MinION 83 237 108 /

pb-k3-NA12878 7 165 020 DNA PacBio SMRT 2 618 188 /

ERR194147 1 207 494 172 DNA Illumina HiSeq2000 3 149 060 436 101
ERR194147 2 207 494 172 DNA Illumina HiSeq2000 3 149 060 436 101

Human

ERR194147 2 173 144 DNA Illumina HiSeq2000 32 963 184 101

Ct5 S5 b1 9 872 180 DNA Clontech HiSeq3000 238 508 524 51
Ill4 batch1 1 225 876 DNA Illumina HiSeq3000 31 672 308 51
NEB12 batch1 7 930 268 DNA NEB HiSeq3000 204 889 280 51H. brain

NEXTF batch2 12 349 932 DNA NEXTFlex HiSeq3000 319 073 916 51

Human SRR10407349 480 116 RNA Illumina MiSeq 9 449 128 65

Human SRR8311266 4 945 096 RNA Illumina HiSeq2500 81063812 51

B. trout SRR13632831 23 965 044 RNA Illumina HiSeq2500 203 675 076 202

Ginseng SRR17333571 36 457 676 RNA Illumina NovaSeq6000 216 678 820 302

Table 3.1: The FASTQ dataset split into groups.

Notice that in Table 3.1 the read length in the case of Nanopore and PacBio sequencing is not present
since they are variable.

Sample Name Size(KB) Total seq. length Nchromosomes

Human GCF 000001405.26 GRCh38 genomic 3 134 124 3 099 734 149 24

Zebrafish GCF 000001635.27 GRCm39 genomic 2 664 292 1 373 454 788 25

Mouse GCF 000002035.6 GRCz11 genomic 1 640 076 2 728 222 451 22

Table 3.2: FASTA dataset stats.

In the following section, we describe the experimental results of our FPLGeD tool against two
main competitors: the common, general-purpose GZip compressor and SPRING10, a reference-free
compressor tailored for FASTA and FASTQ files.

The experimental results are divided into two main categories (FASTA and FASTQ) and this is due
to the fact that the structure of the two file types and their sizes are very di↵erent and treating them
simultaneously would hamper the data visualization.

All tests were performed on a machine with a Intel Quad-Core i7-3770, 3.40GHz CPU, 8GiB of
memory, and running Ubuntu 20.04 Linux as operating system.

3.2 Performance on FASTQ files

The performance of FPLGeD on FASTQ files is evaluated from three points of view: the encoding
time, the encoded size and the decoding time. In Table 3.3, we can see the compression performance
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of FPLGeD against GZip (the most commonly used FASTQ compressor in practice) and the well-
known SPRING compressor.

Name Size(KB) FPLGeD(KB) GZip(KB) SPRING(KB)

nanopore-NA12878 183 238 556 82 008 924 82 523 720 82 453 876
pacbio-k3-NA12878 7 165 020 3 173 716 3 059 020 2 360 456
ERR194147 1 207 494 172 85 632 576 50 227 020 33 406 176
ERR194147 2 207 494 172 87 268 872 51 434 560 34 331 324
ERR194147 2 173 144 909 876 702 908 428 720
Clontech5 Sample5 batch1 9 872 180 3 609 852 1 716 276 942 316
Illumina4 batch1 1 225 876 446 248 163 916 83 252
NEB12 batch1 7 930 268 2 770 784 980 516 487 292
NEXTFlex batch2 12 349 932 3 794 016 1 523 728 766 096
SRR10407349 480 116 145 808 93 440 44 192
SRR8311266 4 945 096 1 142 368 698 900 292 052
SRR13632831 23 965 044 8 737 000 7 811 356 5 177 244
SRR17333571 36 457 676 11 773 932 6 925 276 4 023 616

Table 3.3: The FASTQ dataset size performance.

Name Size(KB) FPLGeD ratio Gzip ratio SPRING ratio

nanopore-NA12878 183 238 556 2.23⇥ 2.22⇥ 2.22⇥
pacbio-k3-NA12878 7 165 020 2.25⇥ 2.34⇥ 3.04⇥
ERR194147 1 207 494 172 2.40⇥ 4.13⇥ 6.21⇥
ERR194147 2 207 494 172 2.38⇥ 4.03⇥ 6.04⇥
ERR194147 2 173 144 2.39⇥ 3.09⇥ 5.07⇥
Clontech5 Sample5 batch1 9 872 180 2.73⇥ 5.75⇥ 10.48⇥
Illumina4 batch1 1 225 876 2.75⇥ 7.48⇥ 14.72⇥
NEB12 batch1 7 930 268 2.86⇥ 8.09⇥ 16.27⇥
NEXTFlex batch2 12 349 932 3.26⇥ 8.11⇥ 16.12⇥
SRR10407349 480 116 3.29⇥ 5.14⇥ 10.86⇥
SRR8311266 4 945 096 4.33⇥ 7.08⇥ 16.93⇥
SRR13632831 23 965 044 2.74⇥ 3.07⇥ 4.63⇥
SRR17333571 36 457 676 3.10⇥ 5.26⇥ 9.06⇥
average // 2.82⇥ 5.06⇥ 9.36⇥

Table 3.4: The FASTQ dataset compression ratios.

As table Table 3.4 shows, FPLGeD compression ratio has an average of 2.42⇥, which is slightly
worse than Gzip (5.06⇥) and three times worse than SPRING (9.36⇥). The same data of Table 3.3,
is presented as bar-plot in Figure 3.2, where on the x axis there are the FASTQ file names, sorted
in lexicographic order and on the y axis there are the sizes of original files and their compressed
versions measured in KBs.

In particular, we observe that on average files packed with FPLGeD are twice as large as the
same compressed with GZip and SPRING. A notable exception is for third generation sequencing
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datasets in which the high entropy of quality scores causes bwt-based compression of both GZip
and SPRING to become ine�cient.
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Figure 3.2: Comparison between original size, FPLGeD encoding, GZip compressed size and
SPRING encoding size.

This result is not to be interpreted as a failure of the procedure, because FPLGeD applies only an
encoding function to the various parts of the file, without performing a real compression, unlike
competitors.

The choice to perform only an encoding, as already said, derives from the satisfaction of the spec-
ifications defined in the introduction: to develop a tool able to reduce the size of files containing
DNA or RNA that allows fast random access and that is very light in terms of compression and
decompression speed.

The real advantage of FPLGeD is that, if further space reduction is required, a simple compression
algorithm (such as GZip) can be applied to the result to obtain a very small file in a rather low
overall compression time.

In particular, FPLGeD does not alter the entropy of the file and performs a size reduction such that
applying GZip to the encoded file takes a very short time.

In order to evaluate the compression and decompression speed of FPLGeD, we look at Figure 3.3
and Figure 3.4 that represent respectively the encoding times of the three methods analyzed, and the
fastest of the two.
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Figure 3.3: Encoding times of FPLGeD, Gzip and SPRING.
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Figure 3.4: Encoding times of FPLGeD and SPRING.

The time consumed by FPLGeD in encoding is on average 0.18⇥ the time spent by GZip com-
pression, and 0.28⇥ the time used by SPRING. Moreover, in the case of third generation sequenc-



60 EXPERIMENTAL RESULTS

ing (aka the most widely used and transferred nowadays), FPLGeD is more than 4 times faster
than its competitors. For example, FPLGeD requires 14 minutes for compressing the 174GB
nanopore-NA128878.fq dataset, which outperforms SPRING (68 minutes). Let us go back on
Figure 3.2 and examine the compression ratio of FPLGeD on nanopore-NA128878.fq. Not only
our tool is faster than its competitors, but it is also better in terms of space occupancy.

In Chapter 2 we described FPLGeD as an algorithm that combines three di↵erent procedures to
encode the three di↵erent parts that constitute a FASTQ file. In Figure 3.5 we see how the rela-
tionships between DNA sequence and quality score changes. If initially, they were two strings of
equal length, it is clear from the experimental results that the ability of compressing the nucleotide
sequence is far greater than the compression ratio of quality. This is consistent with what already
shown in the theorems regarding the compression ratios of sequence encoding and quality encoding
(Theorem 2.4.4, Theorem 2.5.2, Theorem 2.5.6, Theorem 2.5.9, Theorem 2.5.13, Theorem 2.5.16).

Header (kB)

12.6

Sequence (kB)

32.8

Quality(kB)

54.6

Figure 3.5: Partial encoded sizes on average across the three parts of a FASTQ file (hdr, seq,
qlt).

Regarding decoding time, we see that SPRING is up to 4 times slower than FPLGeD and Gzip
(Figure 3.6). When comparing with GZip, we see that our algorithm is slower by a factor of 1.5
on average, but in the best cases (reads sequenced with Nanopore and Pacbio, the third generation
sequencers), the performance of FPLGeD improves by up to a factor of 4 that of GZip (Figure 3.7).
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Figure 3.6: Decoding times of FPLGeD encoding, GZip, and SPRING.
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Figure 3.7: Decoding times of FPLGeD encoding, and GZip.

Before concluding the section on processing FASTQ files, we would like to show the percentage
breakdown of encoding and decoding times across the 3 sub-procedures (hdr, seq, qlt).
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Figure 3.8 shows that at encoding time the most expensive procedure in terms of time is the encoding
of the quality score (qlt), while at decoding time it is more expensive to decode the sequence (it
takes the 66% of the total time.
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Sequence (s)

28.8

Quality(s)

46.9

(a) Encoding

Header (s)

14.0
Sequence (s)
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Quality(s)

19.5

(b) Decoding

Figure 3.8: Encoding/decoding time distribution across the three procedures (hdr, seq, hdr).

3.3 Performance on FASTA files

In Section 3.1, we presented the FASTA files as the assembled genomes of three di↵erent species:
human, zebrafish, mice, which sizes (plain and compressed/encoded) are shown in Table 3.5 and in
Figure 3.9.

Sample Name Size(KB) FPLGeD(KB) GZip(KB) SPRING(KB)

Human GCF 000001405.26 GRCh38 genomic 3 134 124 967 328 898 548 664 220

Zebrafish GCF 000001635.27 GRCm39 genomic 2 664 292 817 772 794 120 567 912

Mouse GCF 000002035.6 GRCz11 genomic 1 640 076 512 884 500 976 360 840

Table 3.5: FASTA dataset plain and encoded sizes.
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Sample Name Size(KB) FPLGeD ratio GZip ratio SPRING ratio

Human GCF 000001405.26 GRCh38 genomic 3 134 124 3.24⇥ 4.72⇥ 3.49⇥
Zebrafish GCF 000001635.27 GRCm39 genomic 2 664 292 3.20⇥ 4.55⇥ 3.27⇥

Mouse GCF 000002035.6 GRCz11 genomic 1 640 076 3.26⇥ 4.69⇥ 3.36⇥
// average // 3.23⇥ 3.37⇥ 4.65⇥

Table 3.6: FASTA dataset compression ratios.
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Figure 3.9: Comparison between original size, FPLGeD encoding, GZip compressed size and
SPRING encoding size.

In the case of FASTA we note that FPLGeD is still less performing in terms of compression ratio
when compared to SPRING and GZip, but this time the gap is much smaller. In particular, FPLGeD
gets on average a compression ratio of 3.23⇥, GZip 3.37⇥ and SPRING 4.65⇥.

The discrepancy in results, if we compare the compression ratio of FPLGeD on FASTQ and FASTA,
is originated by the fact that the encoding of the string containing the qualities is the part that
degrades performance the most. As explained in Definition 3, FASTA files usually represent the
entire genome of a species and do not contain the quality scores, but only header and sequence.
Moreover, when compared to the size of the header, the sequence is several orders of magnitude
larger (at least 4) and therefore, in the average case, the conditions are met to get the best out of the
sequence encoding algorithm.

As far as encoding/compression times are concerned, FPLGeD performs much better than its com-
petitors in the case of FASTA files, as can be seen from Figure 3.10. On average, the time necessary
to encode a FASTA file using FPLGeD is 1/30 of the time needed by GZip and 1/35 the time needed
by SPRING. For example, encoding the whole human reference genome (GCF 000001405.26 GRCh38 genomic.fna,
3GB) by means of FPLGeD takes 11 seconds, GZip needs 5 minutes, and SPRING 7 minutes.
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Figure 3.10: Comparison between the encoding times of FPLGeD, GZip, and SPRING.

Decompression of the previously encoded sequence is even faster than encoding. In this case in
fact, taking as an example the human genome, we see that FPLGeD takes 3.4 seconds, Gunzip 18
and SPRING 7 minutes (exactly the time taken for compression and this is due to the nature of the
algorithm). To get a visualisation of this, look at Figure 3.11.
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Figure 3.11: Comparison between the decoding times of FPLGeD, GZip, and SPRING.
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Chapter 4

Conclusions

This thesis addressed the problem of designing and testing an algorithm able to reduce the size of
files containing genomic information, specifically FASTA and FASTQ file types.

The proposed tool, is based on the FPLGeD algorithm that consists in three routines: one for en-
coding the headers of the sequences, one for encoding the nucleotide sequences and the last one
(required only for FASTQ files) deals with encoding the quality score.

From a theoretical point of view, FPLGeD o↵ers an excellent compromise between encoding/decoding
speed and compression ratio, ensuring also the possibility to make random accesses to a sequence
without the need to entirely decode it. It is also worth noting that the proposed tool does not alter
the entropy of the file and, thanks to its extreme speed, is suitable to be used in combination with
any compression software, such as GZip.

Following an accurate experimental analysis, carried out by comparing FPLGeD with other algo-
rithms frequently used to compress FASTA(Q) files, we found that the algorithm confirms in practice
the characteristics highlighted by a theoretical analysis, o↵ering a good reduction in terms of space
and taking very little time to be executed.

FPLGeD outperforms its competitors on third generation sequencing data that is not only the most
widely used nowadays, but it also represents the direction towards which all the modern sequencers
are focusing on.

Given the e↵ectiveness of this tool, it is proposed as a future work to investigate the I/O bottleneck,
in particular by creating a library capable of loading the entire contents of the file into memory.

Furthermore, we see it worth trying to combine this encoding method with a real compression
mechanism, in order to decrease the entropy of the file, thus obtaining a higher compression ratio,
while keeping a reasonable compression/decompression speed.
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[32] I. Numanagić, J. K. Bonfield, F. Hach, J. Voges, J. Ostermann, C. Alberti, M. Mattavelli, and
S. C. Sahinalp, Comparison of high-throughput sequencing data compression tools, Nature
Methods, 13 (2016), pp. 1005–1008.
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