
Computational Mathematics
For Learning and Data Analysis

Numerical Methods

Based on prof. Federico Giovanni Poloni’s lectures

Gemma Martini

December 14, 2021

2

A sincere thank you to Alessandro Cudazzo,
Donato Meoli, Giulia Volpi, Ivan Grujic and all those
who helped me improving these notes in style and contents.

Contents

3

4 CONTENTS

Chapter 1

Mathematical background
for Numerical Methods

In the following chapters we will cover the part of Numerical Analysis of the
course of Computational Mathematics for Data Learning and Analytics. This
part of the course is held by Professor Federico Giovanni Poloni. The content of
these chapters is based primarily on the material provided by the professor on
the e-learning portal. In addition to that material, the introduction is based on
the content of the course Linear Algebra held by Prof. Gilbert Strang from MIT.
There is a nice portal called MIT OpenCourseWare where you can find a lot of
recorded lectures from MIT. Linear algebra course is just super duper fantastic.

1.1 A brief journey in Linear Algebra
What is linear algebra? Linear algebra solves systems of linear equations. Period.
But there is a whole world there in. So better start right now.

What is a system of equations? Well, simply put, it is a bunch of linear
equations, say m, each of which is characterized by at most n unknowns, i.e.
variables. Since there are two dimensions involved here, that is m and n, there
are actually two points of view to look at this system. We can look at it from
the row perspective and from the column perspective. Let us go through an
example to show this.

Example 1.1.1. Suppose we are given the following system of two linear equa-
tions with two unknowns: {

−4x + 2y = 2
3x + 5y = −3

We can write this system of linear equations in the following matrix form:[
−4 2
3 5

] [
x
y

]
=
[

2
−3

]

5

6CHAPTER 1. MATHEMATICAL BACKGROUND FOR NUMERICAL METHODS

−10 −5 5 10

−10

−5

5

10

x

y

Figure 1.1: Linear system

Usually the coefficient matrix is indicated with A, the vector of unknowns is
indicated with x, and the vector of coefficients on the right hand side is usually
indicated with b.

The row perspective is the one that we are mostly used to deal with. Each
equation in this example represents a line in the Cartesian plane and the problem
requires to find the point (if it exists) where the two lines meet (see figure 1.1).

The column perspective is a bit different and may be completely new to you.
Look at this mind blowing thing:

x

[
−4
3

]
+ y

[
2
5

]
=
[

2
−3

]
Why is column perspective interesting? Because now we can look at these
columns of A as vectors in a column space. We are eager to find the right
amount (unknowns) of each of these column vectors that produce the vector b
(see figure 1.2).

Linear combination is the fundamental operation of the whole course. Besides
the question of what is the linear combination of the columns of A that produce
b, we will also ask ourselves what are all the possible vectors b that we can
obtain with some linear combination of the columns of A? Or what are all the
possible linear combinations of the columns of A that give a certain b?

In the previous example we have encountered a bunch of new terms. Let us
now define them rigorously. We saw that the generic system of linear equations
can be written as:

Ax = b

Note that we are actually abusing terminology here. Even though it is not that

1.1. A BRIEF JOURNEY IN LINEAR ALGEBRA 7

x

y

2−4 2

−3

3

5

Figure 1.2: Linear system 2

important, bare in mind that these are actually affine equations. The linear
equations are the equations that go through the origin, while affine need not to.

We have seen that there is a row perspective and a column perspective. These
perspectives are actually two different Euclidean spaces. The first is called row
space and the second one is the column space. Note how these correspond directly
to the rows and columns of A respectively. When the matrix is a square matrix
the dimension of the two spaces is the same (if certain properties hold). But
when we have m× n matrices, then the two spaces have different dimensions (if
the same properties hold). Remember all these spaces, because it is important!
Especially the column space.

Clearly, two equations in two unknowns is a very basic case. Let us see
another basic case before moving to definitions.

Example 1.1.2. Let us now take three equations in three unknowns.
TODO: I need a tikz magician here...

Now that we have said that the linear system of equations can also be seen
as a bunch of vectors in the n dimensional space, we can think of solving a linear
system of equations as the problem of finding a linear combination of columns of
the matrix A to obtain the vector b. Thus, given a vector b, how can we obtain
it (if it is possible at all) as a linear combination of the columns of A? If you
think a bit, the vector b is yet another vector in the n dimensional space. Think
of the columns of A as directions, i.e. n directions. You are in the origin of the
space, and you want to get to the point pointed by b. You may move in each

8CHAPTER 1. MATHEMATICAL BACKGROUND FOR NUMERICAL METHODS

of n directions only once and in every direction you can choose how much you
want to move. You may move backwards (corresponding to negative coefficient
in the linear combination) or forward (corresponding to positive coefficient in
the linear combination). A zero coefficient means that you do not move in the
corresponding direction. The problem is: given these n direction, can you get
from the origin to the point b whatever b you are given? This basically means
that these n direction must somehow “fill” the whole space, that is for every
point b there must be a linear combination of directions that bring you from
the origin to b. So, is there a way to know whether a given set of columns is
“sufficiently powerful” to be able to generate all the “treasury maps”? Here
comes the concept of linear independence.

If the columns of A are linearly independent, then every vector b on the
right hand side of the equation Ax = b can be generated with some combination
of columns of A. What does it mean to be linearly independent? It means that
when you take one of the n columns, you cannot find a linear combination of the
remaining n− 1 columns of A that can generate the one that you have picked.
Geometrically speaking, n− 1 columns in an n dimensional space generate a so
called subspace. In an n dimensional space there are n types of subspaces: a
zero subspace, the subspaces of 1 dimension, the subspaces of 2 dimensions, ...,
the subspaces of n− 1 dimensions, and finally a subspace of n dimensions. Note
singularity and plurality in the previous sentence. There is only one subspace of
zero dimension, namely the origin. There is only one subspace of n dimensions
in an n dimensional space, the space it self. The remaining subspaces are all
of dimensions 1 to n − 1. A subspace of dimension 1 is a line. A subspace of
dimension 2 is a plane. A subspace of dimension 3 is the three dimensional space.
A subspace of dimension 4... well you picture it, I’m not able. So n− 1 vectors
in the n dimensional space generate a subspace (think of a plane subspace in the
three dimensional space). If the vector that we have picked from A is located on
the very same plane generated by the n− 1 vectors, then there is no way that
these n− 1 vectors can generate a vector that is outside of this plane, because
there is no direction that points outside of the plane itself. The vector that we
have picked and that is on the plane is then linearly dependent from the n− 1
remaining ones. Clearly, we may have more than one vectors that are linearly
dependent from the rest in A. The obvious question now is what is the subspace
that the columns of A generate? In other words what is the maximum number
of linearly independent columns of A? In linear algebra this is the so called rank
of the matrix. When the rank is n then the matrix is said to be full rank. Given
this definition, the rank of the matrix then satisfy the following box constraint:

0 ≤ rank(A) ≤ n

for some A ∈M(n,R). Since we have two dimensions, namely rows and columns,
each of which generates its own space, namely row space and column space, you
may legitimately wonder if these are the same. Well, in case of square matrices
n× n the two are the same. So the rank of row space is the same of the column
space. You want a proof? Search rank of a matrix on Wikipedia for three
different proofs.

1.1. A BRIEF JOURNEY IN LINEAR ALGEBRA 9

Let us now turn back to the rows. The question for you is: what happens if
we do instead:

xT A = bT

where xT is a row vector, so we have:

[
x1 x2 . . . xn

]


a11 a12 . . . a1n

a21 a22 . . . a2n

...
... . . .

...
an1 an2 . . . ann

 =
[
b1 b2 . . . bn

]

The row vector b is the linear combination of the rows of A where the weights
are given by the vector x. Namely:

x1
[
a11 a12 . . . a1n

]
+ · · ·+ xn

[
an1 an2 . . . ann

]
=
[
b1 b2 . . . bn

]
Everything we said about columns, linear independence, rank, etc, holds for rows
and row space of the matrix A. Basically, when we do operations from the left of
the matrix A then we are operating on rows of the matrix, when instead we are
operating from the right then we are performing operations over columns of A.

Now that we know hat linearly independent columns of A can generate all the
vectors in the corresponding n dimensional column space, the question is how do
we generate it? In other words, given a vector b how do we find the coefficients
of the linear combination that generate it? Note the linear combination and
not a linear combination. There is only one linear combination that generates
it. Why? Picture the row space. Each equation in the linear system generates
a subspace of dimension n − 1. So in three dimensional space the equations
represent planes. In case of a system of n linear equations in n unknowns, we
have n subspaces of dimension n− 1 in the n dimensional row space. So if these
n subspaces are linearly independent, then it must be the case that there is only
one point that touches them all when they intersect. If there is more than one
point that is in the intersection of all of them, then the matrix A is not full rank.
Suppose then that the columns (or rows) are linearly independent, how do we
find the coefficients? Note this basic math:

ax = b ⇐⇒ 1
a

x = b

a
⇐⇒ x = a−1b

where every term is a simple scalar. So to get x we must multiply b with
the inverse of a. The same happens with the matrices and vectors. We need
something called inverse matrix of A, indicated with A−1:

x = A−1b

The matrix A is invertible only if it has full column rank. This is why the linear
independence is so central to the whole linear algebra. Note that only square
matrices may have the inverse matrix. Obviously, the inverse matrix is unique.
And moreover the inverse of the inverse is the initial matrix, namely:

(A−1)−1 = A

10CHAPTER 1. MATHEMATICAL BACKGROUND FOR NUMERICAL METHODS

Cool man. But how the heck are we going to find the inverse? There are
many (not that many) algorithms that can be used for matrix inversion. But one
of the standard one is the Gauss-Jordan Elimination algorithm. Are we going to
cover it here? Why not? It is one of the most used algorithms in linear algebra
so let us give it some love. But before doing this algorithm, we still need one
ingredient: matrix multiplications.

1.1.1 Matrix multiplications: four flavors plus one of look-
ing at it

Matrix multiplication is another of the most important operations that you can
think of when you think of linear algebra. In here, we are going to cover briefly
four different ways of looking at this important operation.

We start with the basic definition that you probably have seen if you have
ever done some linear algebra course. The classical definition is:

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

an1 an2 . . . ann




b11 b12 . . . b1n

b21 b22 . . . b2n

...
...

bn1 bn2 . . . bnn

 =


c11 c12 . . . c1n

c21 c22 . . . c2n

...
... . . .

...
cn1 cn2 . . . cnn


where:

cij =
n∑

k=1
aikbkj

But as we all know, there is more than one of everything. Another way to
look at matrix-matrix multiplication is the following. We have seen that matrix
vector multiplication is basically a linear operation that send a certain vector x
into another vector y. Thus, Ax = y means that x is mapped to y through A.
When it comes to the matrix matrix multiplication, i.e. AB = C, the same story
happens. It is the columns of B that are mapped to columns of C. Each column
i of B (denoted as Bi) is mapped to the corresponding column i of C. Similarly,
we could think of all of this from the row space perspective. The rows of A are
mapped to the corresponding rows of C through B. So these are the additional
two ways to look at matrix matrix multiplication. What about the fourth one?

The fourth way to look at matrix-matrix multiplication is a bit more mind
blowing. In the first way, we have computed the dot products between rows of
A and columns of B. But nobody prevents us from doing the contrary. What if
we used the columns of A and the rows of B:

a1i

a2i

...
ani

 [bi1 bi2 . . . bin

]

What do we get for each i = 1, . . . , n? We get an n× n matrix. So the resulting
matrix C is the summation of n different matrices of size n× n.

1.2. FORMAL DEFINITIONS 11

1.2 Formal definitions
At this point, we are ready to introduce the formality of linear algebra, that we
will use throughout the whole course:

• Vector-Scalar product:
Let x ∈ Rn and λ ∈ R we call multiple of vector x the following vector:

λx = xλ =

λx1
...

λxn


• Vector-Vector product:

Let x, y ∈ Rn, the dot product between these two vectors is defined as
xT y =

n∑
i=1

xiyi. Note in particular that xT y ∈ R. In other words, the dot
product produces a scalar.

• Scalar-Matrix product:
Let A ∈ M(n, m, R) and λ ∈ R we call the scalar-matrix product the
following:

λA = Aλ =


λA11 λA12 · · · λA1m

λA21 λA22 · · · λA2m

...
...

λAn1 λAn2 · · · λAnm


• Matrix-Vector product:

Given a matrix A ∈M(n, m,R) and a vector v ∈ Rm the matrix-vector
product Av = w ∈ Rn is computed as follows:

w = Av =


A1v
A2v

...
Amv

 , wi =
m∑

j=1
Aijvj

This is the simple way, just a row-by-column vector product, the computa-
tional complexity of this operation is O(n2).
The smart way to compute it: linear combinations of columns of A,
e.g.: 

A11 A12 A13
A21 A22 A23
A31 A32 A33
A41 A42 A43


v1

v2
v3

 =

w1
w2
w3


with linear combinations we have:

A11
A21
A31
A41

 v1 +


A12
A22
A32
A42

 v2 +


A13
A23
A33
A43

 v3 =


w1
w2
w3
w4



12CHAPTER 1. MATHEMATICAL BACKGROUND FOR NUMERICAL METHODS

• Matrix-Matrix Product:
Given two matrices A ∈M(n, m, R) and B ∈M(m, k, R) we call matrix-
matrix product the following: C = AB such that Cij = AiB

j , where
Ai

T ∈ Rm is the i-th row of A, Bi is the i-th column of B (Bi ∈ Rm)
and C ∈ M(n, k,R). Notice that this product is not commutative:
AB 6= BA might not even make sense dimension-wise.

� Terminology

In this notes we refer to the columns to a generic matrix A as A1

for the first column, A2 for the second column and so on and so
forth.
Conversely, we represent the rows of a matrix A as Ai.

As long as the complexity is concerned, multiplying two matrices m× n
and n× k requires O(mnk) floating point operations (flops). Forget about
fancier algorithms (e.g. Strassen)

Order of operations

Usual algebra properties hold, e.g.: A(B+C) = AB+AC, A(BC) =
(AB)C,
Parenthesization matters a lot: if A, B ∈ M(n,R), v ∈ Rn, then
(AB)v costs O(n3), but A(Bv) costs O(n2). Programming lan-
guages usually do not rearrange parentheses to help.

• Image of a matrix A (Im(A)): the set of vectors that can be obtained
multiplying A by any vector in the domain of A.

• Kernel of a matrix A (ker(A)): the set of vectors w in its domain such
that Aw = 0.

• Given a matrix A ∈ M(n,R) we call inverse of A the matrix A−1 such
that:

A−1A = AA−1 = In =


1

1
1

. . .
1


︸ ︷︷ ︸

n

The inverse of a product (shoe-sock identity) is (AB)−1 = B−1A−1.
Notice that this identity holds only for square matrices.

• The transpose of a matrix A ∈ M(n, m,R) is AT such that AT
ij = Aji.

The transpose of a product (shoe-sock identity) is (AB)T = BT AT .
(This identity holds for square and rectangular matrices)

1.2. FORMAL DEFINITIONS 13

Definition 1.2.1. General linear group (GL): the general linear group of
degree n is the set of n × n invertible matrices, together with the operation of
ordinary matrix multiplication

Fact 1.2.1. Let A ∈ GL(n,R) (aka A is a real square matrix of size n and
invertible), B, C ∈M(n, m,R) and we have the equality AB = AC. If there is
a matrix M such that MA = I, the following holds

(MA)B = (MA)C ⇐⇒ B = C, M = A−1

In general, AB = AC does not imply B = C; it holds only when A is invertible.

� Terminology

v =

4
5
6

 , vT =
(
4 5 6

)

v is a column vector in R3 (or a matrix in M(3, 1,R)) and vT is a row
vector (or a matrix in M(1, 3,R)).

Definition 1.2.2 (Basis). We call basis a set B of elements (vectors) in a
vector space V if every element of V may be written in a unique way as a (finite)
linear combination of elements of B. The coefficients of this linear combination
are referred to as components or coordinates on B of the vector. The elements
of a basis are called basis vectors.

Definition 1.2.3 (Canonical basis). We term canonical basis of a vector space
Rn the basis made of all the column of the n× n identity matrix In ∈M(n,R).
Example 1.2.1. In R4 the canonical basis is B = {e1, e2, e3, e4} such that

e1 =


1
0
0
0

 , e2 =


0
1
0
0

 , e3 =


0
0
1
0

 , e4 =


0
0
0
1


and each vector w ∈ R4 can be written as w = w1e1 + w2e2 + w3e3 + w4e4.

J Mantra

The powerful idea behind linear algebra: many relations are true regardless
of the basis we use. E.g. w, v and w + v in two different bases.

Example 1.2.2. Let us take two vectors v, w and let us write those with respect
to two different bases B1 and B2:

wB1 =
(

2
4

)
vB1 =

(
2
1

)

14CHAPTER 1. MATHEMATICAL BACKGROUND FOR NUMERICAL METHODS

and
wB2 =

(
−1
3

)
vB2 =

(
0.5
1.5

)

Figure 1.3: How a change of basis reflects on the space.

Definition 1.2.4 (Triangular matrix). Let A ∈ M(n,R). We term A upper
triangular if (A)ij = 0 for each i < j. Conversely, we term A lower trian-
gular if (A)ij = 0 for each j < i. The set of all triangular n× n real matrices
is a group and it is denoted as T (n,R).

Definition 1.2.5 (Diagonal matrix). Let A ∈M(n,R). We term A diagonal
if (A)ij = 0 for each i 6= j. The set of all diagonal n×n real matrices is a group
and it is denoted as D(n,R).

Definition 1.2.6 (Symmetric matrix). Let A ∈ M(n,R). We term A sym-
metric if (A)ij = (A)ji for each i, j = 1, . . . , n. The set of all symmetric n× n
real matrices is a group and it is denoted as S(n,R).

Fact 1.2.2. A ∈ S(n,R) ⇐⇒ AT = A

1.3 Solving Linear Systems
The objective of this course, for the part concerning numerical methods, is
solving linear systems efficiently.

Definition 1.3.1 (Linear system). Let A ∈M(n, m,R), b ∈ Rn and x ∈ Rm.
We term linear system the following:

Ax = b

Sometimes it is not possible or not feasible to solve such a system, then we
try to approximate the vector x ∈ Rm, trying to increase the proximity of the
approximated value, trying to minimize ‖Ax− b‖∗ (see Figure 1.4).

∗Where ‖·‖ denotes the norm of a vector and it is formalized in Definition 1.4.1

1.3. SOLVING LINEAR SYSTEMS 15

Figure 1.4: In this case the image of the matrix A (in red) does not contain b and
the best one can do is to obtain a projection of b in the plane Im(A) (drawn in blue).

Definition 1.3.2 (Least Squares Problem). Let A ∈M(n, m,R), b ∈ Rn and
x ∈ Rm. We term least squares problem the following:

min
x∈Rm

‖Ax− b‖

If we have a square and invertible matrix A ∈ GL(n,R) solving a linear
system means: find those coordinates x1, . . . , xn needed to write b as a linear
combination of the columns of (square) A and in this case, the solution is given
by: x = A−1b.

Definition 1.3.3 (Linear combination). In a very informal way, we can define
the goal of linear combination as the pursuit of obtaining a certain target
vector b ∈ Rn using m (in principle m 6= n) vectors x1, x2, . . . , xm ∈ Rn such
that

a1x1 + a2x2 + · · ·+ amxm = b

where ai ∈ R are properly chosen.

Theorem 1.3.1. Let A ∈M(n, m,R) and let b ∈ Rn. It holds that any linear
system Ax = b is solvable iff A is invertible.

16CHAPTER 1. MATHEMATICAL BACKGROUND FOR NUMERICAL METHODS

� Something on Matlab . . .

Matlab provides syntactic sugar to solve linear systems.
Before introducing such syntax let we just notice the following 5\ 2
(= 2/5) 6= 5/2.
The syntax to solve Ax = b is A\ b, where the algorithm used in Matlab
is not inverting the matrix A and then performing the multiplication, but
it is a more sophisticated and efficient one.
Moreover, in Matlab the syntax .op means that function op should be
performed entry by entry of the non-scalar variable. For example b ./ c
performs the division element-wise of the two vectors b and c.

Definition 1.3.4 (Full column rank matrix). Let A ∈M(n, m,R) we say that
A has full column rank if ker A = {0}.

Equivalently, rk(A) = n or alternatively @z ∈ Rn {0} such that Az = 0.

Fact 1.3.2. Let A ∈M(n, m,R), the least square problem min
x∈Rn

‖Ax− b‖ has
a unique solution iff A has full column rank.

Theorem 1.3.3. Let A ∈ M(n, m,R). A has full column rank iff AT A is
positive definite.

Proof. A has full column rank ⇐⇒ ‖Az‖ 6= 0,∀z ∈ Rm {0} ⇐⇒ ‖Az‖2 6=
0,∀z ∈ Rm {0} ⇐⇒ 0 = (Az)T

Az = zT AT Az

Warning: this is not the best way to solve a linear system on a computer!

� Something on Matlab . . .

Notice that the machine precision is 10−16, so we should pay attention
when making computations, since we may incur in some error (propor-
tional to the size of the operands).
In Matlab a matrix is written as A=[1, 2, 3; 4, 5, 6];, where [1, 2,
3] is the first row of the matrix A.
The transpose of a matrix or a vector is denoted by A’.
The inverse of a square matrix is denoted by inv(A).
If we are interested in only a part of our matrix A we may write A(1:2,
1:3) and obtain only the rows of A that go from 1 to 2 and those columns
from 1 to 3.
Notice that in Matlab both vector and matrices are 1-based.

Definition 1.3.5 (Block multiplications). Let A ∈ M(n, m,R) and let B ∈
M(m, k,R). We can compute the result of a block of the matrix AB as the
product of the two blocks in A and B in the corresponding position.

1.3. SOLVING LINEAR SYSTEMS 17

Observation 1.3.1. When computing a matrix product, we get the same result
if we use the row-by-column rule block-wise.

× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×


·


× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×

 =



× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×


(
× × ×
× × ×

)
·

 × × ×
× × ×
× × ×

+
(
×
×

)
·
(
× × ×

)
+
(
× ×
× ×

)
·
(
× × ×
× × ×

)
=
(
× × ×
× × ×

)

Notice that block operations usually give better performance: one matrix-
matrix product performs faster than n matrix-vector products (even if they have
the same number of flops). This is one of the reasons why library calls usually
perform better than hand-coded loops (Blas/Lapack).

Fact 1.3.4 (Block triangular matrices). Let M ∈M(n, m,R) and B ∈M(m, k,R)
such that they are block triangular. Their product is a block triangular matrix
as well. In other words, block triangular matrices are closed under products:

MB =
(

A B
0 C

)(
D E
0 F

)
=
(

AD AE + BF
0 CF

)
Fact 1.3.5 (Properties of block triangular matrices).
Let M be a block triangular matrix, where all the blocks on the diagonal are
square

M =


A11 A12 · · · A1n

0 A22 · · · A2n

...
.

...
0 · · · 0 Ann


1. A block triangular matrix is invertible iff all diagonal blocks Aii are invert-

ible;

2. The eigenvalues† of a block triangular matrix are the union of the eigen-
values of each diagonal block Aii;

3. Let M ∈ GL(n,R) such that M =
(

A B
0 C

)
the inverse of M is

M−1 =
(

A−1 −A−1BC−1

0 C−1

)
.

†The concept of eigenvalue is exposed in Definition 1.5.1.

18CHAPTER 1. MATHEMATICAL BACKGROUND FOR NUMERICAL METHODS

4. The product of two block (upper/lower) triangular matrices (with compatible
block sizes) is still block triangular

Why are we interested in block triangular matrices? They depict a situation
as shown in Figure 1.5.

Figure 1.5: The adjacency matrix of a biparted graph has 0s in its bottom left
part (Matlab syntax A[p+1:n; 1:p]=0), which means that the edges from a connected
component and the other are in one direction only.

J Mantra

Matrix structures matter. Block triangular linear systems have a cheaper
solution than general systems as shown in Example 1.3.1.

Example 1.3.1. Let us take a 2× 2 block triangular linear system(
A B
0 C

)
·
(

x
y

)
=
(

e
f

)
(Again, diagonal blocks are square and all dimensions are compatible.)(

Ax + By
Cy

)
=
(

e
f

)
=⇒ y = C−1f , x = A−1(e−BC−1f)

(
A B
0 C

)−1
=
(

A−1 −A−1BC−1

0 C−1

)
Informal idea: we can start solving from the variables multiplied by C.

1.4 Orthogonality
Definition 1.4.1 (Norms). Let x ∈ Rn. We “measure” its magnitude using
so-called “norms”.

Euclidean: ‖x‖2 = xT x =
√

n∑
i=1

xi
2;

1.4. ORTHOGONALITY 19

Norm 1: ‖x‖1 =
n∑

i=1
|xi|;

p-Norm: |x|p =
(

n∑
i=1
|xi|p

)1/p

;

0-Norm: ‖x‖0 = |{i : |xi| > 0}|, which accounts for n−#of 0 entries;

∞-Norm: ‖x‖∞ = max
i=1,...,n

|xi|.

From now on in this part of the course, if not explicitly specified, we will
refer to norm-2 only.

Definition 1.4.2 (Scalar product). Let v, w ∈ Rn we term standard scalar
product between v and w the real number vT w =

n∑
i=1

viwi.

Definition 1.4.3 (Orthogonal vectors). Let v, w ∈ Rn. We say that v is
orthogonal to w (in symbols v⊥w) if their scalar product is zero.

Formally, vT w = 0.

Definition 1.4.4 (Orthogonal matrix). Let U ∈M(n,R) a square matrix. We
term U orthogonal if UT U = UUT = In where In is the identity matrix of size
n (1 on the diagonal, 0 elsewhere) or equivalently if U−1 = UT .

The set of all orthogonal matrices in M(n,R) is a group and it called orthog-
onal group and denotes as O(n,R).

Fact 1.4.1. Let U ∈ O(n,R), ∀x ∈ Rn we have that ‖Ux‖ = ‖x‖.

Proof. Let us provide two different alternatives for proving the equality:

1.
‖Ux‖ =

√
(Ux)T

Ux 1=
√

xT UT Ux =
√

xT Inx =
√

xT x = ‖x‖

where (1)= follows from the definition of transpose of a product.

2. Instead of proving that ‖Ux‖ = ‖x‖ we will prove ‖Ux‖2 = ‖x‖2:

‖Ux‖2 = (Ux)T · (Ux) (1)= xT UT Ux = xT Inx = xT x = ‖x‖

where (1)= follows from the definition of transpose of a product.

Geometrically speaking, orthogonal transformations (aka matrices) pre-
serve the norm, so an orthogonal matrix U represents a symmetry or a rotation
and these operations do not alter the size of vectors.

20CHAPTER 1. MATHEMATICAL BACKGROUND FOR NUMERICAL METHODS

Figure 1.6: Matrix U1 represents a rotation, while U2 is a symmetry operation.

Definition 1.4.5 (Orthonormality). Let x, y ∈ Rn we say that x and y are
orthonormal if they are orthogonal and have norm 1. Formally, < x, y >= 0
and ‖x‖ = ‖y‖ = 1.

Fact 1.4.2. Let us take U ∈ O(n,R). Then its columns U1, U2, . . . , Un are
orthonormal and the same holds for its rows.

U iT
U j =

{
1 if i = j

0 otherwise

and

UiUj
T =

{
1 if i = j

0 otherwise

Fact 1.4.3. The set of orthogonal matrices is closed under product operations.
Let U, V ∈ O(n,R), then U · V is orthogonal.

Proof. (UV)T · (UV) = V T UT UV = V T InV = V T V = In

Since we will often deal with tall-thin rectangular matrices with orthonormal
columns as U1

U1 =
(
U1 U2 · · · Un

)
∈M(m, n,R)where m ≥ n

the following fact may come in handy

Fact 1.4.4. ∀U1 ∈ M(m, n,R) where M ≥ n and the columns of U1 are
orthogonal ∃U2 ∈M(m, m− n,R) s.t.

(
U1 U2

)
∈ O(m,R).

1.5 Eigenvalues / Eigenvectors
Definition 1.5.1 (Eigenvectors and eigenvalues). Let A ∈ M(n,R) and let
x 6= 0 ∈ Rn and λ ∈ R.

If Ax = λx we say that x is an eigenvector of eigenvalue λ.

Theorem 1.5.1. Let A ∈ T (n,R) (real triangular matrix). The eigenvalues of
A are the scalars on the diagonal.

1.5. EIGENVALUES / EIGENVECTORS 21

Definition 1.5.2 (Diagonalizable matrix). Some matrices A ∈M(n,R) under
some conditions can be decomposed as:

A = V ΛV −1

A = V ΛV −1 =

V 1 V 2 · · · V n

 ·


λ1 0
λ2

0 . . .
λn

 ·


w1
w2
...

wn


where V ∈ GL(n,R) is the matrix that has as columns the eigenvectors of A

(V i, λi) ∀i = 1, . . . , n and wi = Vi
−1 are the rows of the inverse of matrix V .

Fact 1.5.2. ∀V i ∈ Rn eigenvectors of A they are still eigenvector of the diago-
nalized form of A = V ΛV −1

Proof.
AV i = V ΛV −1V i = V Λei = λiV

i

Another way to see the diagonalized form of A is the following:

A = V ΛV −1 =
n∑

i=1
viλiw

T
i =

v1 · λ1 · w1
T + v2 · λ2 · w2

T +· · ·+ vn · λn · wn
T

� Something on Matlab . . .

Notice that in Matlab the eigenvalues and eigenvectors of a matrix are
computed using the command [V, Lambda] = eig(U) and this operation
has a computational complexity of O(n3).
We can check that the matrix A is equal to the decomposition in this way:
A - V*Lambda*inv(V) or norm(A - V*Lambda*inv(V)) (both should be
close to zero).

Notice that not all matrices A ∈M(n,R) allow a diagonal decomposition. It
may happen that such a matrix A is diagonalizable in C and its eigenvalues are
complex.

22CHAPTER 1. MATHEMATICAL BACKGROUND FOR NUMERICAL METHODS

This decomposition tell us the behavior under repeated application of a matrix
A to a vector x. This process allows to scale a general vector x.

� Something on Matlab . . .

Let A = [1 1; 1 1] and x = [1 1] such that λx = 2 then A*x is
equal to [2 2]’ and A*A*x is equal to [4 4]’

Fact 1.5.3. If A ∈ M(n,R) is diagonalizable (aka may be written as A =
V ΛV −1) then Akx =

n∑
i=1

λk
i αiV

i, for some αi ∈ R.

Proof. Let us write x in the base of Rn made of the linearly independent columns
of V :

x = V 1α1 + V 2α2 + · · ·+ V nαn

for some αi ∈ R.

• Algebraic view point:

Ax = A · (V 1α1 + V 2α2 + · · ·+ V nαn)
= AV 1α1 + AV 2α2 + · · ·+ AV nαn

= λ1V 1α1 + λ2V 2α2 + · · ·+ λnV nαn

= V 1(λ1α1) + V 2(λ2α2) + · · ·+ V n(λnαn)

(1.5.1)

Then

A2x = A ·
(

V 1(λ1α1) + V 2(λ2α2) + · · ·+ V n(λnαn)
)

= AV 1λ1α1 + AV 2λ2α2 + · · ·+ AV nλnαn

= λ1
2V 1α1 + λ2

2V 2α2 + · · ·+ Aλn
2V nαn

(1.5.2)

The thesis follows inductively.

1.5. EIGENVALUES / EIGENVECTORS 23

• Linear algebra view point:

Akx = A ·A · . . . ·A · x
= V Λ���V −1

��V Λ���V −1 . . .��V ΛV −1x
= V ΛkV −1x

= V


λ1

k

λ2
k

. . .
λn

k

V −1x

= V


λ1

k

λ2
k

. . .
λn

k

 ·


α1
α2
. . .
αn



(1.5.3)

Notice that if A is not square, Av, λv have different sizes and it doesn’t
make sense to talk about eigenvalues.

1.5.1 Eigenvector: what could possibly go wrong?
1. The eigenvalue decomposition is highly non-unique, we can:

• Reorder eigenvalues/vectors
• Replace an eigenvector vi with 2vi , 3.5vi . . .

• For matrices with repeated eigenvalues we have even more possibilities:
e.g I = V IV −1 for every invertible V

2. some matrices have only complex eigenvalues: e.g.
(

2 4
−3 3

)
3. some matrices have fewer eigenvectors than we want and we can’t use

eigenvalue decomposition: e.g.
(

1 1
0 1

)
Now, thanks to the eigenvalue decomposition we can prove the following:

Theorem 1.5.4. Let A ∈M(n,R). If |λi| < 1 for all eigenvalues λi of A then
lim

k→∞
Akx = 0, ∀x ∈ Rn.

Theorem 1.5.5. Let A ∈ M(n,R). If ∀λi eigenvalues of A |λi| < |λ1| then
Akx ≈ V 1λ1

kα1, ∀x ∈ Rn.

24CHAPTER 1. MATHEMATICAL BACKGROUND FOR NUMERICAL METHODS

Fact 1.5.6. Let A ∈M(n,R) be a diagonalizable matrix and let

A = V ΛV −1 =

V 1 V 2 · · · V n

 ·


λ1
λ2

. . .
λn

 ·


w1
w2
...

wn


Let us now consider a reordering of V ’s columns and apply the same permu-

tation to the “diagonal vector” of Λ such that

V̂ =

V 2 V 1 V 3 · · · V n

 and Λ̂ =


λ2

λ1
λ3

. . .
λn


A can be diagonalized through such V̂ and Λ̂ as A = V ΛV −1 = V̂ Λ̂V̂ −1.

Moreover, in the case of repeated eigenvalues

Fact 1.5.7. Let A ∈ M(n,R) a diagonalizable matrix such that A = V ΛV −1,
where λ1 = λ2 (without loss of generality). Then V can be replaced by Ṽ =V 1 + V 2 V 1 − V 2 V 3 · · · V n

.

Theorem 1.5.8 (Spectral theorem). Any real, symmetric matrix is diagonaliz-
able. Formally, let A ∈ S(n,R). Then A is diagonalizable A = UΛU−1, where
eigenvalues are all real numbers and we can take U orthogonal matrix.

Notice that for symmetric matrices none of the “unlucky” situations enumer-
ated above may happen (it is justified by the spectral theorem).

� Something on Matlab . . .

If we have any symmetric matrix B and we compute [V, D] = eig(B),
matlab will always return an orthogonal matrix V .

Definition 1.5.3 (Quadratic form). Let Q ∈ S(n,R) we define quadratic
form

f(x) = xT Qx

for each x ∈ Rn.

1.5. EIGENVALUES / EIGENVECTORS 25

Geometrically, a quadratic form defines a paraboloid.

Example 1.5.1. Let f1(
(

x1
x2

)
) =

(
x1 x2

)(3 2
2 4

)(
x1
x2

)
= 3x1

2+4x1x2+4x2
2

and let f2(
(

x1
x2

)
) =

(
x1 x2

)(3 2
2 −4

)(
x1
x2

)
= 3x1

2 + 4x1x2 − 4x2
2

For a graphic hint see Figure 1.7.

(a) f1(x) (b) f2(x)

Figure 1.7: The plot of functions.

Theorem 1.5.9 (Variational characterization). Let Q ∈ S(n,R) and let x ∈ Rn.
Then

λmin‖x‖2 ≤ xT Qx ≤ λmax‖x‖2

where λmax and λmin are respectively the eigenvalue of maximum value and the
eigenvalue of minimum value.

Proof. Easy case with Q diagonal:

xT Qx = xT ·


λ2

λ1
λ3

. . .
λn

·x = λ1x1
2+λ2x2

2+· · ·+λnxn
2

It is obvious that this sum is bounded by:

λmin·(x1
2+x2

2+· · ·+xn
2) ≤ λ1x1

2+λ2x2
2+· · ·+λnxn

2 ≤ λmax·(x1
2+x2

2+· · ·+xn
2)

The following holds: λmin ·(x1
2 +x2

2 + · · ·+xn
2) = λmin ·xT x = λmin ·‖x‖2

and, on the other hand, λmax · (x1
2 + x2

2 + · · · + xn
2) = λmax · xT x =

λmax · ‖x‖2 and this proves the fact in the special case of diagonal matrix
Q.

26CHAPTER 1. MATHEMATICAL BACKGROUND FOR NUMERICAL METHODS

General case: Let us represent Q through its eigendecomposition: A =
UΛU−1 = UΛUT , where U is an orthogonal matrix.

xT Qx = xT UΛUT x (1)= yT Λy

where (1)= is due to the change of variable y = UT x (that implies yT = xT U).
By the same argument used in the diagonal case,

λmin · ‖y‖2 ≤ yT Λy ≤ λmax · ‖y‖2

Now the point is that if we can replace
∥∥UT x

∥∥2 = ‖y‖2 with ‖x‖2 we have
proved the theorem. In fact this is true, due to the orthogonality of matrix
U and Proposition 1.4.1.

Corollary 1.5.10. Let Q ∈ S(n,R) and let x ∈ Rn. If x 6= 0

λmin ≤
xT Qx
‖x‖2 ≤ λmax

where λmax and λmin are respectively the eigenvalue of maximum value and the
eigenvalue of minimum value.

Definition 1.5.4 (Positive semidefinite). Let Q ∈ S(n,R). We say that Q is
positive semidefinite (and we indicate � 0) if

xT Qx ≥ 0, for any ‖x‖2 ≥ 0

Definition 1.5.5 (Positive definite). Let Q ∈ S(n,R). We say that Q is
positive definite (and we indicate � 0) if

xT Qx > 0, for any ‖x‖2
> 0

Fact 1.5.11. Let Q ∈ S(n,R). The following holds

Q is positive semidefinite ⇐⇒ ∀λ eigenvalue of Q λ ≥ 0
And this holds with the > 0 in the positive definite case.

Proof.

(⇐) xT Qx ≥ λmin‖x‖2 ≥ 0 since we are in the hypothesis that all the
eigenvalues are ≥ 0

(⇒) ∀vi eigenvector of Q 0 ≤ vi
T Qvi = vi

T · (λivi) = λivi
T vi = λi‖vi‖2 ⇒

λi ≥ 0.

Corollary 1.5.12. Let Q ∈ S(n,R) such that Q � 0. The following holds:

Q is invertible ⇐⇒ Q is strictly positive definite

1.6. SINGULAR VALUE DECOMPOSITION (SVD) 27

Fact 1.5.13. Let B ∈ M(m, n,R) (possibly rectangular), BT B ∈ S(n,R) is a
valid product and it is a square, symmetric, positive semidefinite matrix.

Proof. Symmetry: (BT B)T = BT · (BT)T = BT B.

Positive definite: xT BT Bx = (Bx)T (Bx) = ‖Bx‖2 ≥ 0

Corollary 1.5.14. The same holds for BBT ∈ S(m,R) and it is easily proved
taking C = BT ∈M(n, m,R).

� Something on Matlab . . .

In order to check if a matrix A is positive definite in Matlab we can look
at its eigenvalues (cfr. eig(A)).

Notice that in the complex case most of these properties work as well, but
it is needed to replace AT with AT ‡ (transpose and entrywise conjugate).
The norm of a complex vector is computed as

‖x‖2
2 = x∗x = x1x1 + x2x2 + · · ·+ xnxn = |x1|2 + · · ·+ |xn|2 ∈ R+ ∪ {0}

Moreover, in the complex case, a matrix U ∈ M(n,C) s.t. UU∗ = I is called
unitary matrix (orthogonal + complex)

1.6 Singular value decomposition (SVD)
We are left with the task of reaching a (sort of) “eigenvalue decomposition” when
the target matrix is not symmetric.
There are two ways to generalize the eigenvalue decomposition to a non-symmetric
matrix A (with something that always exists):
Definition 1.6.1 (Schur decomposition). Let A ∈ M(n,R), ∃ U ∈ O(n,R)
orthogonal matrix and T ∈ T (n,R) triangular matrix such that A = UTUT and
this is called Schur decomposition.
We can say more:
Definition 1.6.2 (Singular value decomposition). Let A ∈M(n,R), ∃ U, V ∈
M(n,R) orthogonal matrices (V not necessary equal to U) and Σ ∈ Diag(n,R)
such that A = UΣV T and this is called Singular Value Decomposition.

A =
(
U1 U2 · · · Un

)
·


σ1

σ2
. . .

σn

 ·


V1
V2
...

Vn

 =
n∑

i=1
uiiσivii =

‡Often denoted with A∗ or AH and called Hermitian matrix.

28CHAPTER 1. MATHEMATICAL BACKGROUND FOR NUMERICAL METHODS

Where σi are called singular values and they are sorted such that:

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0

General fact on singular values:
• Singular values 6= eigenvalues

• They are always positive and usually more spread apart than the eigenvalues.

σ1 ≥ |λ1| and |λn| ≥ σn

σ1 is larger than the largest eigenvalue of a matrix A and σn is smaller
than the smallest eigenvalue of a matrix A.

The SVD can be defined also for a rectangular matrix A:
Definition 1.6.3 (Rectangular matrices and SVD). Let A ∈M(m, n,R), there
exist U ∈ O(m,R) orthogonal, V ∈ O(n,R) orthogonal and Σ ∈ D(m, n,R)
diagonal in the sense that

∑
ij = 0 with i 6= j (padded with zeros). Matrix A has

a SVD factorization (A = UΣV T), where Σ has the following shape:
• case m < n (e.g m = 3, n = 5)σ1 0 0 0 0

0 σ2 0 0 0
0 0 σ3 0 0


• case m > n (e.g m = 5, n = 3)

σ1 0 0
0 σ2 0
0 0 σ3
0 0 0
0 0 0


Definition 1.6.4 (Thin SVD). Let A ∈M(m, n,R), has a thin SVD factor-
ization: we may restrict to compute only the first min(m, n) vectors that appear
in this sum: thin SVD.

A =
ñ min(m,n)∑

i=1
uiiσivii = u11σ1v11 + u22σ2v22 + · · ·+ uñ,ñσñvñ,ñ

� Something on Matlab . . .

In Matlab the SVD decomposition is obtained through the command
svd(A), which return value is made of the three matrices U, Σ, V .
As an example, [U, S, V] = svd(A). Notice that, if svd(A) is assigned
to one variable, then such variable is an array of singular values.
The thin SVD can be computed as:[U, S, V] = svd(A, 0)

1.6. SINGULAR VALUE DECOMPOSITION (SVD) 29

Computational costs
We are not going into details of algorithms for computing SVD, but we would like
to add a consideration about the computational complexity of such an algorithm.

• [U, S, V] = svd(A, 0) (thin) costs O(mn2) ops for A ∈M(m, n,R) or
A ∈M(n, m,R) with m ≥ n

• [U, S, V] = svd(A) (non-thin) is more expensive, because it has to store
the large m ×m factor. (But there are some tricks to store orthogonal
matrices compactly, more about it later).

1.6.1 Properties of SVD
The SVD reveals rank, image, and kernel of a matrix.

Definition 1.6.5 (Rank). Let A ∈M(n,R) we call the rank of A the number
of non-zero singular values.

Equivalently, the rank is the size of the column space.

Property 1.6.1. A matrix A ∈ M(n,R) has rank r iff all its singular values
starting from the r + 1-th are 0, formally iff σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · =
σn = 0.

Thanks to Property 1.6.1, we can somehow talk about an “even thinner”
SVD, where all the 0s in the bottom right part of the matrix Σ, cancel out the
latter columns of U and the latter rows of V (aka columns of V T). A pictorial
representation of the shape of Σ can be found below.

Σ =



σ1
σ2

. . .
σr

0
. . .

0

0


This factorization represents A as

r∑
i=1

uiiσivii.

Fact 1.6.2. Let A ∈ M(n,R) such that has the following SVD-factorization
A = UΣV T with U ∈ O(n,R) orthogonal, V ∈ O(n,R) orthogonal and Σ ∈
D(n,R) is a diagonal matrix. The image of A is the span of U1, U2, . . . , Ur,
hence rk(A) = r. Moreover, ker(A) = span(Vr+1, Vr+2, . . . , Vn), since V is
orthogonal.

30CHAPTER 1. MATHEMATICAL BACKGROUND FOR NUMERICAL METHODS

Proof.
TODO: plugging in x = Vj , where j > r

Definition 1.6.6 (Matrix norm). Let A ∈M(m, n,R). We define the matrix
norm of A as

‖A‖ := max
x6=0

‖Ax‖
‖x‖ = max

z s.t.‖z‖=1
‖Az‖

Where the norm may be any of the ones defined in Definition 1.4.1 second
equality is introduced in order to work in a compact set, the one of normalized
vectors z.

Property 1.6.3. Let A and B ∈ M(n, m,R) and let x ∈ Rn, the following
holds, for any norm defined in Definition 1.4.1:

• ‖A‖ ≥ 0 (and the equality holds iff A = 0);

• ‖αA‖ = |α|‖A‖ ,∀α ∈ R;

• ‖A + B‖ ≤ ‖A‖+ ‖B‖;

• ‖AB‖ ≤ ‖A‖ ‖B‖;

• ‖Ax‖ ≤ ‖A‖ ‖x‖, ∀x ∈ Rn.

Fact 1.6.4. Let A ∈ (n,R) and let U ∈ O(m, n,R) orthogonal, in the case of
2-norm ‖A‖2

(1)= ‖AU‖2
(2)= ‖UA‖2.

Proof.
(1)=

‖UA‖2 = max
x∈Rn, x 6=0

‖UAx‖2
‖x‖2

= max
x∈Rn, x 6=0

√
(UAx)T (UAx)
‖x‖2

= max
x∈Rn, x 6=0

√
xT AT��UT

�UAx
‖x‖2

= max
x∈Rn, x 6=0

‖Ax‖2
‖x‖2

= ‖A‖2

(2)=

‖AU‖2 = max
x∈Rn, x6=0

‖AUx‖2
‖x‖2

(2)= max
y∈Rn, y6=0

‖Ay‖2
‖y‖2

= ‖A‖2

where (2)= follows from the substitution y = Ux.

1.6. SINGULAR VALUE DECOMPOSITION (SVD) 31

Definition 1.6.7 (Frobenius norm). Let A ∈M(n, m,R), we term Frobenius

norm of A ‖A‖F =
√

n∑
i=1

m∑
j=1

(A)ij
2.

Notice that all the properties enumerated in Property 1.6.3 hold for the
Frobenius norm as well.

Fact 1.6.5. Let A ∈ M(n, m,R) and let A = UΣV T be its singular value
decomposition. The following holds:

1. ‖A‖2 = ‖Σ‖2 = σ1

2. ‖A‖F = ‖Σ‖F =
ñ∑

i=1
σi

2, where ñ = min (n, m)

Proof. 1. The first equality follows from Proposition 1.6.4, while the second
is proved as follows:

‖Σ‖2 = max
x∈Rn, x 6=0

‖Σx‖2
‖x‖2

= max
x∈Rn, x6=0

∥∥∥∥∥∥∥∥∥∥∥


σ1

σ2
. . .

σn

0

 ·


x1
x2
...

xn


∥∥∥∥∥∥∥∥∥∥∥

2∥∥∥∥∥∥∥∥∥


x1
x2
...

xn


∥∥∥∥∥∥∥∥∥

2

= max
x∈Rn, x 6=0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



σ1x1
σ2x2

...
σnxn

0
...
0



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2∥∥∥∥∥∥∥∥∥


x1
x2
...

xn


∥∥∥∥∥∥∥∥∥

2

=

√
(σ1x1)2 + (σ2x2)2 + · · ·+ (σnxn)2

√
x12 + x22 + · · ·+ xn

2

≤

√
(σ1x1)2 + (σ1x2)2 + · · ·+ (σ1xn)2

√
x12 + x22 + · · ·+ xn

2 = √σ1
2 ·(((((((((((√

x12 + x22 + · · ·+ xn
2

(((((((((((√
x12 + x22 + · · ·+ xn

2
= σ1

(1.6.1)

32CHAPTER 1. MATHEMATICAL BACKGROUND FOR NUMERICAL METHODS

The equality is achieved if we pick x = e1 =


1
0
...
0

.

2. The proof of this assertion is similar to the other and it is left to the reader.

Theorem 1.6.6 (Eckart-Young). Let A ∈ M(n, m,R) and let A = UΣV T be
its singular value decomposition.

The solution of min
rk(X)≤k

‖A−X‖F is given by the truncated SVD:

X =
(
U1 U2 · · · Uk

)
·


σ1

σ2
. . .

σk

 ·


V 1

V 2

...
V k


Where the norm is both ‖·‖2 and ‖·‖F .

Fact 1.6.7. Let A ∈ M(n,R) and let A be invertible. The following holds:∥∥A−1
∥∥ = 1

σn

Proof. Since A is invertible, none of the σi is 0, hence the smaller (namely σn)
is not 0.

A−1 = (UΣV T)−1 (1)= V T −1Σ−1U−1 = V


1

σ1 1
σ2

. . .
1

σn

UT

Where (1)= follows from the orthogonlaity of V and U .
Notice that this is almost an SVD, because the values on the diagonal are

not sorted in a decreasing order.
Plugging in the norm, we have:

∥∥A−1∥∥ =

∥∥∥∥∥∥∥∥∥V


1

σ1 1
σ2

. . .
1

σn

UT

∥∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥∥


1

σ1 1
σ2

. . .
1

σn


∥∥∥∥∥∥∥∥∥ = 1

σn

Example 1.6.1. For example, given a certain image, that can be represented as
a matrix of values in the range [0, 255], the rank-1 SVD of such image, results in
a very abstract picture, see Figure 1.8. The more we increase the rank, the better
is the similarity of the approximated image with respect to the original one.

1.6. SINGULAR VALUE DECOMPOSITION (SVD) 33

� Something on Matlab . . .

Given a certain matrix A, we can compute the SVD decomposition using
the command [U, S, V] = svd(A)

(a) Rank 1 (b) Rank 2

(c) Rank 5 (d) Full rank

Figure 1.8: How the approximation of a matrix changes with respect to the different
ranks.

Definition 1.6.8 (Principal component analysis). Given a matrix A, we term
principal component analysis the analysis of features of such matrix via the
rows and columns of U and V respectively, where U and V are the matrices of
the SVD decomposition.

34CHAPTER 1. MATHEMATICAL BACKGROUND FOR NUMERICAL METHODS

Chapter 2

Least Squares Problem

2.1 LSP: the task

� Do you recall?

In Definition 1.3.2 we said that for A ∈M(n, m,R), b ∈ Rn and x ∈ Rm,
the least squares problem is the following:

min
x∈Rm

‖Ax− b‖

In this chapter we are going to present three different methods for solving
the LS problem, that are:

• Normal Equations (direct method);

• QR Factorization (iterative method);

• SVD Factorization (iterative method).

2.2 NE direct method
2.2.1 Background
Fact 2.2.1. Given A ∈M(m, n,R) the following conditions are equivalent:

• AT A is positive definite;

• A has full column rank;

• the columns of A are linearly independent;

• Ker(A) = {0}.

35

36 CHAPTER 2. LEAST SQUARES PROBLEM

Fact 2.2.2. Let A ∈ M(m, n,R), s.t. Q = AT A ∈ M(n,R) is positive
semidefinite. The quadratic function f(x) = xT Qx− qT x + bT b is strongly
(or strictly) convex. In other words, f(x) has a unique minimum.

Fact 2.2.3. Let A ∈ M(m, n,R), s.t. Q = AT A ∈ M(n,R) is positive
semidefinite. The quadratic function f(x) = xT Qx− qT x + bT b has gradient

∇f(x) = 2AT Ax− 2AT b

Proof. We know that f(x + h) = f(x) + (∇f(x))T · h + o(‖h‖)

f(x + h) = (x + h)T
AT A(x + h)− 2bT A(x + h) + bT b

= xT AT Ax + xT AT Ah + hT AT Ax + hT AT Ah−2bTAx− 2bT Ah + bTb
= f(x) + (2xT AT Ah− 2bT Ah) + o(‖h‖)

= f(x) + (2AT Ax− 2AT b)T h + o(‖h‖)
(2.2.1)

So, ∇f(x) = 2AT Ax− 2AT b

We would like to know when the gradient is 0.

Fact 2.2.4. Let A ∈ M(m, n,R), s.t. Q = AT A ∈ M(n,R) is positive
semidefinite. The quadratic function f(x) = xT Qx−qT x + bT b has a unique
minimum in

x = (AT A)−1(AT b)

Proof. ∇f(x) ?= 0 ⇐⇒ AT Ax = AT b Since AT A is a square matrix and also
non singular (which means invertible) we may find x by solving a linear system
x−1 = (AT A)−1(AT b).

2.2.2 The closed formula
The theory exposed in the previous section comes in handy after some algebra
on the least squares problem:

min
x∈Rn

‖Ax− b‖ ≡ min
x∈Rn

‖Ax− b‖2 = min
x∈Rn

(Ax− b)T · (Ax− b)

= min
x∈Rn

xT AT Ax− xT AT b− bT Ax + bT b

= min
x∈Rn

xT AT Ax− 2bT AT x + bT b

*= min
x∈Rn

xT Qx− qT x + bT b

where *= follows from the substitutions Q = AT A and qT = 2bT A.

2.2. NE DIRECT METHOD 37

Therefore
LSP: closed formula

A solution to the least squares problem

min
x∈Rn

‖Ax− b‖

is given by
x = (AT A)−1

AT b

Notice that, independently of the shape of A, the matrix Q is a square matrix.
The algorithm for computing x follows the steps:
• Compute AT A, where the complexity is 2mn2, where m > n;

• Compute AT b, that has a complexity of 2mn;

• Solve AT Ax = AT b, which complexity depends on the algorithm.
Fact 2.2.5. Let A ∈M(n, m,R), b ∈ Rn and let the least squares problem be

min
x∈Rn

‖Ax− b‖

The residual Ax− b is orthogonal to any vector v ∈ span(A). Formally,

(Av)T (Ax− b) = 0

Proof. vT (AT Ax−AT b) = 0.

Definition 2.2.1 (Moore-Penrose pseudoinverse). Let A be a matrix inM(n, m,R).
• if A has full column rank, the Moore-Penrose pseudoinverse of A is

A† := (AT A)−1
AT

• if A has full row rank, the Moore-Penrose pseudoinverse of A is
A† := AT (AAT)−1

Thanks to this definition, we can rewrite the solution of a LS problem as
x = A†b.

Notice that the solution of min ‖Ax− (b1 + b2)‖ can be written as the sum
of two solutions of min ‖Ax1 − b1‖ and min ‖Ax2 − b2‖.
Fact 2.2.6. Let A be a matrix in M(n, m,R).

• if A has full column rank, the Moore-Penrose pseudoinverse is a left-inverse
of A: A†A = I

• if A has full row rank, the Moore-Penrose pseudoinverse is a right-inverse
of A: AA† = I

Let us study a different kind of methods for solving the least squares problem,
namely factorization methods, that reveal properties of matrices and can be
used as intermediate steps in algorithms.

38 CHAPTER 2. LEAST SQUARES PROBLEM

2.3 QR Factorization
2.3.1 Background
Theorem 2.3.1 (QR factorization). ∀A ∈ M(m,R), ∃Q ∈ O(m,R), ∃R ∈
T (m,R) upper triangular such that A = QR.
Fact 2.3.2. Let A ∈ M(n, m,R), b ∈ Rn. A solution to the least squares
problem

(P) min
x∈Rn

‖Ax− b‖

can be computed as follows:
1. first compute the QR factorization (A = QR) and then obtain x = A−1b =

R−1Q−1b

2. compute then c = QT b

3. and then x = R−1c
And the computational cost is expressed as:

1. QR → O(m3)

2. compute c → O(m2)

3. compute x → O(m2)
Definition 2.3.1 (Housholder reflector). Let v ∈ Rm. An Householder re-
flector is a matrix H ∈M(m,R) such that

H = I − 2
vT v · vvT

Equivalently, since vT v = ‖v‖2 ∈ R

H = I − 2
‖v‖2 vvT = I − 2vuvu

T

where vectvu = 1
‖v‖ v.

Lemma 2.3.3. Householder reflectors are orthogonal.
Proof.

HHT = (I − 2
‖v‖2 · vvT) · (I − 2

‖v‖2 · vvT)

= I · I − 2
‖v‖2 · vvT I − I · 2

‖v‖2 · vvT + 2
‖v‖2 · vvT · 2

‖v‖2 · vvT

= I − 2
‖v‖2 · vvT − 2

‖v‖2 · vvT + 4
‖v‖4 · vvT vvT

= I − 4
‖v‖2 vvT + 4

‖v‖4 v‖v‖2vT

= I

(2.3.1)

2.3. QR FACTORIZATION 39

Corollary 2.3.4. The Householder reflector is Hermitian (symmetric, in the
real case), unitary and involutory. Formally,

H = H−1 = HT

Notice that geometrically, an Householder reflector identifies an hyperplane and
reflects any vector with respect to such hyperplane. See Figure 2.1

Figure 2.1: Reflection with respect to the hyperplane.

Example 2.3.1. Let us be given the problem of computing the product Hx for
H ∈M(m,R) and x ∈ Rm.

Hx = (I − 2
‖v‖2 vvT)x = x− 2

‖v‖2 v(vT x)

Let us first compute a = vT · x, then b = vT · v. We are now ready to compute
the result y = x 2∗a

b · v
All these operations are linear operations, so the complexity is O(m), cheaper

than generic matrix-vector product (O(m2)).

At this point, we are interested in finding an Householder reflector H that
maps x to y, formally Hx = y (Figure 2.2).

Lemma 2.3.5. ∀x, y ∈ Rm s.t ‖x‖= ‖y‖∃H ∈ M(m,R) s.t. Hx = y, where
the Householder matrix H is obtained from v = x− y ∈ Rm.

40 CHAPTER 2. LEAST SQUARES PROBLEM

Figure 2.2: H is the hyperplane that “bisects” the angle between x and y.

Example 2.3.2. Let us take y =


‖x‖
0
...
0

 ∈ Rm.

v = x− y =


x1
x2
·
·
·

xn

−


s
0
·
·
·
0

 =


x1 − s

x2
·
·
·

xn


where s = ‖x‖

� Something on Matlab . . .

In Matlab, a function is defined using the keyword function
and specifying the return parameters, as follows: function[v,s] =
householder_vector(x), where x is the argument.

Algorithm 2.3.1 Householder vector Matlab implementation.

1 function[v,s] = householdervector(x)
2 s = norm(x);
3 v = x;
4 v(1) = v(1) - s;
5 v = v / norm(v);

Notice that the problem of ?? is the subtraction may create a problem with
machine numbers, if s and ‖x‖ are very close. If we take ‖x‖= −s the subtraction
becomes and addition, and everything works well.

2.3. QR FACTORIZATION 41

In the end, we would like to obtain this behaviour for every possible value
for x and s, so line 2 may be modified as s = - sign(x(1)) * norm(x).

2.3.2 Iterative algorithm via Householder’s reflectors

� Do you recall?

A QR decomposition, also known as a QR factorization or QU fac-
torization, is a decomposition of a matrix A ∈ M(n,R) into a product
A = QR of an orthogonal matrix Q and an upper triangular matrix R.

� Terminology

From now on, for every matrix M ∈ M(n,R) we will denote as M(i :
end, j) the vector taken as the rows from i to n of the j-th column of
matrix M .

Figure 2.3: If x is oriented as in the plot it is better if we choose −‖x‖e1 verse,
because it is opposite to x.

Example 2.3.3. Let us start describing the algorithm through an example: given

A =


× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 ∈M(m,R), where m = 5, we would like to calculate

the QR factorization of A.
Step 1 : construct a Householder matrix M ∈M(m,R)that sends A(:, 1) (first

column of A) to a multiple of e1 and keeps the rest of the matrix the same.

Then we have H1A =


× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×
0 × × × ×

 Let us write Q1 ∈M(m,R)

42 CHAPTER 2. LEAST SQUARES PROBLEM

as Q1 = H1.

Step 2 : take H2 ∈ M(m − 1,R) such that H2A(2 : end, 2) =


×
0
0
0

 and

compute:
1 0 0 0 0
0

0 H2
0
0

 ·Q1A =


1 0 0 0 0
0

0 H2
0
0

 ·

× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×
0 × × × ×



=


× × × × ×
0 × × × ×
0 0 × × ×
0 0 × × ×
0 0 × × ×


(2.3.2)

let us write Q2 ∈M(m,R) as a block matrix Q2 =
(

I1×1 0
0 H2

)
, Q1 = H1.

Therefore, we get Q2 ·Q1 ·A =


× × × × ×
0 × × × ×
0 0 × × ×
0 0 × × ×
0 0 × × ×



Step 3 : take H3 ∈ M(m − 2,R) such that H3A(3 : end, 3) =

×0
0

 and we

compute:

Q3 · (Q2Q1A) =


1 0 0 0 0
0 1 0 0 0
0 0

0 0 H3
0 0

 ·

× × × × ×
0 × × × ×
0 0 × × ×
0 0 × × ×
0 0 × × ×



=


× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 × ×


(2.3.3)

Where, Q3 =
(

I2×2 0
0 H3

)
∈M(m,R);

2.3. QR FACTORIZATION 43

Step 4 : take H4 ∈M(m− 3, m− 3,R) such that H4A(4 : end, 4) =
(
×
0

)
and

we compute:

Q4 · (Q3Q2Q1A) =


1 0 0 0 0
0 1 0 0 0
0 0 1
0 0 H4
0 0

 ·

× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 × ×



=


× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 0 ×

 = R

(2.3.4)

Where, Q4 =
(

I3×3 0
0 H4

)
.

In the end, since Qis are an orthogonal matrices and the product of orthogonal
matrices is orthogonal, Q1 · Q2 · Q3 · Q4A = T , which is an upper triangular
matrix.

Theorem 2.3.6 (Product of block matrices). Let I ∈M(k,R), let Hi ∈M(m−
k,R) and let Bi ∈M(k,R), Ci ∈M(k, m−k,R) and Ai ∈M(m−k, m−k,R),
then the product between the two following block matrices is exactly the one
showed below. (

I 0
0 Hi

)
·
(

Bi Ci

0 Ai

)
=
(

BiI Ci

0 Hi ·Ai

)
Proof. It’s trivial computation, using the definition of matrix product.

2.3.3 Matlab implementation

Algorithm 2.3.2 First implementation of QR factorization.
1 function [Q, R] = myqr(A)
2 [m, n] = size(A);
3 Q = eye(m);
4 for j = 1:n
5 v = householder_vector(A(j:end, j));
6 H = eye(length(v)) - 2*v*v';
7 A(j:end,j:end) = H * A(j:end,j:end);
8 Q(:, j:end) = Q(:, j:end) * H;
9 end

10 R = A;

44 CHAPTER 2. LEAST SQUARES PROBLEM

Fact 2.3.7. The cost of this implementation when A is a square matrix is
O(n3 + (n− 1)3 + · · ·+ 13). If A is a rectangular matrix, then the computational
complexity is O(m · n2 + (m− 1) · (n− 1)2 + · · ·+ (m− n + 1)3).

Proof. At line 7 we perform a matrix product between matrices of size n, n− 1,
. . . , 1, so the resulting cost is O(m ·n2 + (m− 1) · (n− 1)2 + · · ·+ (m− n + 1)3).

We may design a faster algorithm, since HAj = Aj − 2v(vT Aj).

Algorithm 2.3.3 More efficient implementation of QR factorization.
1 function [Q, A] = myqr(A)
2 [m, n] = size(A);
3 Q = eye(m);
4 for j = 1:n-1
5 [v, s] = householder_vector(A(j:end, j));
6 A(j,j) = s; A(j+1:end,j) = 0;
7 A(j:end,j+1:end) = A(j:end,j+1:end) - ...
8 2*v*(v'*A(j:end,j+1:end));
9 Q(:, j:end) = Q(:, j:end) - Q(:,j:end)*v*2*v';

10 end

2.3.4 QR factorization for tall-thin A
What if A ∈ M(m, n,R) such that m >> n? Since Q ∈ M(m,R) we would
need a lot of space to store it. For this purpose the tall-thin QR factorization
may come in handy.

Fact 2.3.8 (Thin QR factorization). We may replace Q ∈ M(m,R) and R ∈
M(m,R) with Q1 ∈M(m, n,R) and R1 ∈M(n,R) and the same factorization
holds: A = QR = Q1R1. This is called thin QR factorization.

Proof. A1 ∈ M(m, n,R), A =

Q1 Q2

 · (R1
0

)
= Q · R =

Q1

 · (R1
)

+Q2

(0) = Q1 ·R1

The Matlab code can be modified computing Q as
1 × · · · ×
0
... I-2v 1v 1

T

0

 · . . . ·


In−1 0

0 I-2v 2v 2
T

 · · . . . ·


In

0



2.3. QR FACTORIZATION 45

In the end, this approach has a computational cost of 2mn2 − 2
3 n3+)(mn)

and we have two different scenarios:
1. m ≈ n, then the cost is 4

3 n3

2. m >> n, then the cost is linear in m which is the largest dimension
We have two different storing approaches:
1. Return v1, . . . , vn

2. Store Q

Fun fact

There are some libraries that store the vi vectors in the lower part of
matrix R which is upper triangular and has only zeros below the main
diagonal.

2.3.5 QR factorization for LS problem

� Do you recall?

Let us be given a matrix A ∈M(m, n,R) and a vector b ∈ Rm. We term
least squares problem the problem of minimizing

min
x∈Rn

‖Ax− b‖

We may write first the QR factorization of A, so ∀A ∈ M(m, n,R), ∃Q ∈
O(m,R), ∃R ∈M(m, n,R) such that A = QR, where

Q =

Q1 Q2

 and R =
(

R1
0

)
Fact 2.3.9. Let us be given a matrix A ∈M(m, n,R) and a vector b ∈ Rm. A
solution of the minimum problem

min
x∈Rn

‖Ax− b‖

is x = R1
−1Q1

T b.
Proof.

‖Ax− b‖ (1)=
∥∥QT (Ax− b)

∥∥ =
∥∥QT QRx−QT b

∥∥
=
∥∥Rx−QT b

∥∥ =
∥∥∥∥(R1

0

)
x−

(
Q1

T

Q2
T

)
b
∥∥∥∥

=
∥∥∥∥(R1x−Q1

T b
−Q2

T b

)∥∥∥∥

46 CHAPTER 2. LEAST SQUARES PROBLEM

where (1)= is due to the orthogonality of Q.
Provided that −Q2

T b is constant with respect of x, we can minimize the
norm by picking x such that R1x−Q1

T b = 0. Hence, x = R1
−1Q1

T b.

Notice that we used the fact that R1 is invertible, but is that always true?

Lemma 2.3.10. R1 is invertible ⇔ A has full column rank.

Proof. A has full column rank ⇔ AT A is positive definite ⇔ AT A is positive
semidefinite and invertible, but AT A is positive semidefinite, so we only need to
prove its invertibility.

(QR)T
QR = RT QT QR = RT R =

(
R1

T 0
)
·
(

R1
0

)
= R1

T ·R1

we need the quantity R1
T ·R1 to be invertible and this holds if and only if R1

and R1
T are invertible, or equivalently iff R1 is invertible.

Fact 2.3.11. The cost of solving a LS problem via QR factorization is the
summation of:

1. QR factorization O(mn2)

2. y = Q1
T b

3. x = R1
−1y ≡ R1x = y. Solving this linear system only takes O(n2)

operations, because we can perform backsubstitution: starting from the
last row yn = rnnxn, we can substitute upwards in the system and compute
in each row one single unknown.

Notice that, once the QR factorization has been computed, we can solve multiple
LS problems with the same A by making only little effort.

Note

R1
T R1 is the Cholesky factorization of AT A.

2.4. SVD FACTORIZATION 47

2.4 SVD Factorization

� Do you recall?

Tall thin SVD: A matrix A ∈M(m, n,R) can be written as A = USV T ,
where U ∈ O(n,R) is orthogonal, S ∈ M(m, n,R) is a diagonal matrix
and V ∈ O(n,R) is orthogonal as well. In the case of a tall, thin A the
decomposition has the following shape:

U1 U2 · · · Um


· S ·

V 1 V 2 · · · V n

T

where

S =



σ1
σ2

·
·
·

σn

0


And if we denote U1 the matrix obtained as the first n columns of U we
have the tall, thin SVD: A = U1 · S · V T .

2.4.1 SVD for solving LS problems

Fact 2.4.1. Let us be given a matrix A ∈M(m, n,R) and a vector b ∈ Rm. A
solution of the minimum problem

min
x∈Rn

‖Ax− b‖

is x = V S−1(U1)T b.

48 CHAPTER 2. LEAST SQUARES PROBLEM

Proof.

‖Ax− b‖ =
∥∥USV T x− b

∥∥ ← Def. of SVD
=
∥∥UT (USV T x− b)

∥∥ ← UT is orthogonal
=
∥∥SV T x− UT b

∥∥ ← Distributivity + orthogonality
=
∥∥Sy− UT b

∥∥ ← y = V T x

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



σ1
σ2

·
·
·

σn

0




y1
y2
·
·
·

yn

−



(U1)T b
(U2)T b

...
(Un)T b

(Un+1)T b
...

(Um)T b



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



σ1y1 − (U1)T b
σ2y2 − (U2)T b

...
σnyn − (Un)T b
−(Un+1)T b

...
−(Um)T b



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

(2.4.1)

Where the first n rows may be assigned to 0 iff yi = −UiT b
σ1

(if σi 6= 0∀i), while
the latter m− n do not depend on y.

We compute x as

2.4. SVD FACTORIZATION 49

x = V y ← Orthogonality of V

= V 1y1 + V 2y2 + · · ·+ V nyn

= V 1 1
σ1

(U1)T b + V 2 1
σ2

(U2)T b + · · ·+ V n 1
σn

(Un)T b

= V ·



1
σ1 1

σ2

· 0
·
·

1
σn


· UT · b

= V ·



1
σ1 1

σ2
·
·
·

1
σn

 · U1
T · b

(2.4.2)

where U1 comes from the so-called thin SVD: A =
(
U1 U2

)
·
(

S1
0

)
V T =

U1S1V T .
Notice that V S−1

−1V1
T is the pseudoinverse of A: A† = (AT A)−1

AT

Fact 2.4.2. The σi are different from 0 iff A has full column rank.

Proof. A has full column rank
m

AT A is invertible
m

(USV T)T (USV T) = V ST UT USV T = V ·


σ2

1
σ2

2
·
·
·

σ2
n

 · V
T is

invertible
m

∀i σi 6= 0, since V is orthogonal

Observation 2.4.1. This lemma also proves that the factorization is also a QR
factorization.

50 CHAPTER 2. LEAST SQUARES PROBLEM

� Something on Matlab . . .

svd(A, 0) and qr(A, 0) express that we are only interested in the parts
of the factorization without zeros, in case of a tall, thin matrix A.

We may observe that the computational complexity is O(15 · n3) for square
matrices, while it’s O(m · n2) in the tall, thin case.

2.4.2 Behaviour in case of zeros as singular values
What happens when there are some zeros as singular values?

� Do you recall?

We may recall that the singular values are sorted on the diagonal in
decreasing order (the largest in top left position). From this assumption,
we may say that if there are some σi = 0 then they are in the bottom
right part of the matrix.

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0

Fact 2.4.3. Let us be given a matrix A ∈M(m, n,R) and a vector b ∈ Rm. A
solution of the minimum problem

min
x∈Rn

‖Ax− b‖

where there are some 0 singular values. The solution is

x = (V 1)T 1
σ1

(U1)T b + · · ·+ (V r)T 1
σr

(Ur)T b

Proof.

‖Ax− b‖ =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



σ1y1 − (U1)T b
σ2y2 − (U2)T b

...
σryr − (Ur)T b

σr+1yr+1 − (Ur+1)T b
...

σnyn − (Un)T b
σn+1 · yn+1 − (Un+1)T b

...
σm · ym − (Um)T b



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



σ1y1 − (U1)T b
σ2y2 − (U2)T b

...
σryr − (Ur)T b
−(Ur+1)T b

...
−(Un)T b
−(Un+1)T b

...
−(Um)T b



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2.4. SVD FACTORIZATION 51

No matter what value we choose for yr+1 · · · yn, the norm does not change since

it’s multiplied by 0. Therefore we get infinite solutions of the form y =



(T U1)b
σ1

(U2)T b
σ2...

(Ur)T b
σr

*


In order to make the solution unique, we can modify the problem, by taking

the value that minimize the norm:

min
x∈arg min(‖Ax−b‖)

‖x‖ . (P2)

Notice that ‖x‖ = ‖y‖, because x = V y. It follows from the expression of y
that the choice that minimizes its norm is yr+1 = · · · = yn = 0.]

Hence, the solution of P2 is given by

x = V y =
(
V 1 V 2 · · · V n

)
·



(U1)T b
σ1

(U2)T b
σ2...

(Ur)T b
σr

0


= (V 1)T 1

σ1
(U1)T b+· · ·+(V r)T 1

σr
(Ur)T b

� Note

For practical purposes, it is crucial to stress that when dealing with
machine precision it might be the case that the singular values from r + 1
to n are non zero, but very small. If the check of σi = 0 fails, 1

σi
, with

i > r becomes very big. A way to circumvent this problem is to find
the linear dependencies between the columns, as shown in the following
section.

2.4.3 Truncated SVD
In many real world setups first singular components correspond to the most
prominent features of the dataset, while the smallest ones are fine details, noise
or unreliable data due to the issue of machine precision stated above. Note,

52 CHAPTER 2. LEAST SQUARES PROBLEM

though, that in the sum
n∑

i=1
V i UiT b

σi
the small singular values may have a large

impact, because σi is in the denominator.
We can modify the solution to cope with real world data problems:

x =
n∑

i=1
V i (Ui)T b

σi
becomes xreg =

k∑
i=1

V i (Ui)T b
σi

for a certain k, ignoring small singular values.
Another way to modify the problem is the following.

2.4.4 Tikhonov’s regularization / ridge regression
The Tikhonov regularization is a smoother version of truncated SVD.

xTik = arg min
x∈Rn

‖Ax− b‖2 + α2‖x‖2

Fact 2.4.4. The Tikhonov regularization is equivalent to

xTik = arg min
x∈Rn

∥∥∥∥(A
αI

)
x−

(
b
0

)∥∥∥∥2
(2.4.3)

Proof.
‖Ax− b‖2 + α · ‖x‖2 = ‖Ax− b‖2 + ‖αx‖2

=
∥∥∥∥(Ax− b

αx

)∥∥∥∥2

=
∥∥∥∥(Ax

αx

)
−
(

b
0

)∥∥∥∥2

=
∥∥∥∥(A

αI

)
x−

(
b
0

)∥∥∥∥2

Fact 2.4.5. The solution of the Tikhonov regularization is given by the formula
xT ik = (AT A + α2I)−1

AT b.

Proof. Let us write the explicit solution of Equation (2.4.3) using the pseudoin-
verse

xTikz =
(

A
αI

)†(b
0

)
=
((

A
αI

)T (
A
αI

))−1(
A
αI

)T (b
0

)

=
((

AT αI
)(A

αI

))−1 (
AT αI

)(b
0

)
= (AT A + α2I)−1

AT b.

Fact 2.4.6. The matrix (AT A + α2I) is positive definite.

2.5. LSP: WRAP UP 53

Proof. Let us take z ∈ (R {0})m

zT · (AT A + α2I) · z = zT AT Az︸ ︷︷ ︸≥ 0 + α2zT z︸ ︷︷ ︸
=α2‖x‖2>0

where zT AT Az ≥ 0 holds since AT A � 0.

Fact 2.4.7. Let us be given a matrix A ∈ M(m, n,R) and a vector b ∈ Rm.
Tikhonov’s solution of the minimum problem

min
x∈Rn

‖Ax− b‖

can be written as

xTik =
n∑

i=1
V i σi

σ2
i + α2 (U i)T b.

where σi, ∀i = 1, . . . , m are the singular values of A.

Fare proof
Notice that, if we denote f : R→ R s.t. f(σ) = σ

σ2+α2 :

• if σ � α, then f(σ) ≈ 1
σ

• if σ � α, then f(σ) ≈ σ
α2

This behaviour simulates the truncated SVD, as shown in Figure 2.4.

Figure 2.4: Here is the shape of the formula for the singular values.

In practice, the value α (or k) is chosen as the “amount of noise” expected in
our data, meaning that all the σ values that are dropped are those which have
an absolute value smaller than the noise.

2.5 LSP: wrap up
So far, we presented three methods for solving a least squares problem in addition
to the classical gradient method descent. Let us now compare the performances:

54 CHAPTER 2. LEAST SQUARES PROBLEM

Normal Equations QR SVD GD

m ≈ n 4
3 n3 4

3 n3 ≈ 13n3 ??
m � n mn2 2mn2 2mn2 ??

Table 2.1: Comparison between algorithms for solving LS problem

According to this table, one could ask himself why to choose SVD, since for the
almost square case it is much slower than the other methods. The answer is that
it works much better, providing much more information in the singular case.

Moreover, since the direct Normal Equations method is always the fastest
why did we need to build the other models? In the case of an “almost singular”
matrix A, the result is very far from the optimum. An example of such a matrix
A ∈M(n, 3,R) is

A =

v1 v2 v1 + v2 + εen



Chapter 3

Conditioning And Stability

3.1 Conditioning
Definition 3.1.1 (Sensitivity). We call sensitivity the measure of how much
the output of a problem changes when we perturb its input.

Example 3.1.1. As an example, let:

1. f : R→ R such that f(x, y) = x + 2y

2. g : R→ R such that g(x) = x2

Let us make some perturbations of the parameters of f and g:

1. (f, x):
v = f(x̃, y)− f(x, y) = x + δ + 2y − (x + 2y) = δ

(f, y):

v = f(x, ỹ)− f(x, y) = x + 2(y + δ)− (x + 2y) = 2δ.

We can conclude that f is more sensitive to y than to x.

2. (g, x):

v = f(x̃)−f(x) = (x + δ)2−x2 = x2+2δx+δ2−x2 = 2δx+δ2 = 2δx+o(δ)

A real life example of very sensitive function is the temperature of water
coming from the shower: in particular, when we rotate little the knob the water
becomes too cold or too hot very fast, see Figure 3.5.

Definition 3.1.2 (Absolute condition measure). The absolute condition
number of a univariate function f : R→ R is the maximum possible output
change / input change ratio in the limit for a small change of the input.

κabs(f, x) = lim
ε→0

sup
|x̃−x|≤ε

|f(x̃)− f(x)|
|x̃− x|

.

55

56 CHAPTER 3. CONDITIONING AND STABILITY

Figure 3.1: Geometric idea of temperature of the water in the shower

Equivalently, we term condition number of the problem f : R → R s.t.
y = f(x) with respect to an input x as the best bound of the form

|f(x + δ)− f(x)| ≤ κ|δ|+ o(δ)︸︷︷︸
higher order terms

Or, equivalently, if f is differentiable,

κabs(f, x) = ∂f

∂x

Example 3.1.2. Let us proceed further with the previous example:

1. κabs(f, x):

κabs(f, x) = lim
δ→0

|δ|
|δ|

= 1

κabs(f, y):

κabs(f, y) = lim
δ→0

|2δ|
|δ|

= 2

We can conclude that f is more sensitive to y than to x.

2. κabs(g, x):

κabs(g, x) = lim
δ→0

∣∣2xδ + δ2
∣∣

|δ|
= 2x

Definition 3.1.3 (Absolute condition measure - multivariate). The absolute
condition number of a multivariate function f : Rn → R is the maximum
possible output change / input change ratio in the limit for a small change of
the input.

κabs(f, x) = lim
δ→0

sup
‖d‖≤δ

‖f(x̃)− f(x)‖
‖x̃− x‖ .

Equivalently, if f is differentiable,

κabs(f, x) = ‖∇f(x)‖

3.1. CONDITIONING 57

Example 3.1.3. Let f(x) = xT Qx, for instance for x ∈ R2 so that we can plot
its graph in R3.

Figure 3.2: Paraboloid

We shall take a general example where the cross-section are ellipses, so that
there is a direction of faster and slower ascent; this is not just a circular “cup”
seen in perspective. Note that these directions of faster ascent and lower ascent
correspond to the eigenvectors of the matrix Q.

In this case the absolute condition number is lim
ε→0

max
x̃∈B(x,ε)

∥∥f(x̃)−f(x)
∥∥∥∥x̃−x

∥∥ , and

one can see that the output/input ratio varies with the direction in which x̃ is,
so we have to take a maximum in the whole ball B(x, ε).

Figure 3.3: Level curves of a quadratic function (“seen from above”).

Example 3.1.4. Let f : R2 → R such that f(
(

x1
x2

)
) =

(
1 1

)(x1
x2

)
= x1 + x2.

• d = δ

(
1
1

)
f(x + d)− f(x) = (x1 + δ) + (x2 + δ)− (x1 + x2) = 2δ

58 CHAPTER 3. CONDITIONING AND STABILITY

lim
δ→0

‖f(x + d)− f(x)‖
‖d‖ = lim

δ→0

2δ√
2δ

=
√

2

• d = δ

(
1
−1

)
f(x + d)− f(x) = (x1 + δ) + (x2 + δ)− (x1 + x2) = 2δ

lim
δ→0

‖f(x + d)− f(x)‖
‖d‖ = lim

δ→0

0√
2δ

= 0

• general direction d ∈ R2

‖f(x + d)− f(x)‖ =
∥∥(1 1

)
(x + d)−

(
1 1

)
x
∥∥

=
∥∥(1 1

)
d
∥∥ ≤ ∥∥(1 1

)∥∥ · ‖d‖ =
√

2 ‖d‖

Since we found a direction d = δ

(
1
1

)
that matches the upper bound of the

conditioning, we get that κabs =
√

2.

In general, whenever we are computing a change of something, it is better to
normalize it to the value of the change.

Definition 3.1.4 (Relative error). The relative error of an approximation x̃
to a quantity x is the quantity

‖x̃− x‖
‖x‖

Definition 3.1.5 (Relative condition number). The relative condition num-
ber of a function f : Rn → R is defined as

κrel(f, x) = lim
δ→0

sup
‖x̃−x‖

‖x‖ ≤δ

‖f(x̃)−f(x)‖
‖f(x)‖
‖x̃−x‖

‖x‖

= κabs(f, x) ‖x‖
‖f(x)‖ ,

where x̃ = x + d. With respect to the absolute condition number, we replaced the
absolute error ‖x̃− x‖ with the relative error.

Here are some examples of good and bad accuracy:

• |x̃−x|
|x| ≈ 1: very bad accuracy; it’s just a number with the same order of

magnitude.

• |x̃−x|
|x| ≈ 10−3: about 3 correct significant digits.

• |x̃−x|
|x| ≈ 10−16: about 16 correct digits; we can’t do better typically

(with double precision arithmetic).

3.1. CONDITIONING 59

3.1.1 Conditioning of linear systems

� Do you recall?

Let A ∈ M(n, m,R) and let b ∈ Rn. A linear system expresses the
problem of finding x ∈ Rm such that

Ax = b

Computing the condition number of a linear system means computing the
condition number of the function f(A, b) = A−1b, perturbing the inputs A and
b, one at a time.

Perturbing b We want to compute the limit of the relative error
∥∥f(A,b̃)−f(A,b)

∥∥
‖f(A,b)‖ ,

so we set x = A−1b and x̃ = A−1b̃, and we estimate output error =∥∥x̃−x
∥∥

‖x‖ =?

1.
‖x̃− x‖ =

∥∥∥A−1b̃−A−1b
∥∥∥

=
∥∥∥A−1(b̃− b)

∥∥∥
≤
∥∥A−1∥∥ · ∥∥∥b̃− b

∥∥∥
=
∥∥A−1∥∥ · ‖b + d− b‖

=
∥∥A−1∥∥ · ‖d‖

(3.1.1)

2. ‖b‖ = ‖Ax‖ ≤ ‖A‖ · ‖x‖

At this point we are ready to make the whole computation:

‖x̃− x‖
‖x‖︸ ︷︷ ︸

rel. out. change

≤
∥∥A−1

∥∥ · ‖d‖
‖b‖
‖A‖

= ‖A‖ ·
∥∥A−1∥∥︸ ︷︷ ︸

κrel(f,b)

· ‖d‖
‖b‖︸︷︷︸

rel. in. change

In the end, since input error =
∥∥̃b−b

∥∥
‖b‖ we obtain

κrel(f, x) = lim
ε→0

output error

input error
≤ lim

ε→0

∥∥A−1∥∥ · ‖A‖ =
∥∥A−1∥∥ · ‖A‖

We denote κ(A) =
∥∥A−1

∥∥ · ‖A‖ the condition number of A;

Perturbing A Given Ax = b we obtain (A + ∆A) · (x + ∆x) = b, where
Ã = A + ∆A and x̃ = x + ∆x. Then we can expand as follows
��Ax + ∆A · x + A ·∆x + ∆A ·∆x = �b

60 CHAPTER 3. CONDITIONING AND STABILITY

We can stop taking into account ∆A ·∆x, since it’s a sort of second order
term (∆A ·∆x = o(‖∆A‖ · ‖∆x‖)), so we get the following

∆A · x + A ·∆x = 0

∆x = −A−1 ·∆A · x

then ‖∆x‖ ≤
∥∥A−1

∥∥ · ‖∆A‖ · ‖x‖, which implies ‖∆x‖
‖x‖ ≤

∥∥A−1
∥∥ · ‖∆A‖

‖A‖ .
We obtain that relative output error ≤ κ(A) · relative input error.

We only proved an inequality, but it turns out that it is tight: for every A and
b there is a possible choice of the perturbation x̃ that attains equality.

� Terminology

We call ill-conditioned problems, those which have a high condition
number. Conversely, we term well-conditioned problems those which
have a small condition number.

Condition number, SVD, and distance to singularity

Fact 3.1.1. Let A ∈ M(n, m,R). The conditioning of A (κ(A)) is the ratio
between the smallest and the largest singular value. Formally, κ(A) = σ1

σn
.

Proof. Let A = USV T , then ‖A‖ =
∥∥U · S · V T

∥∥ = ‖S‖ = σ1, since

S =


σ1

σ2
·
·
·

σn

 and σ1 ≥ σ2 ≥ · · · ≥ σn.

It’s also true that
∥∥A−1

∥∥ =
∥∥∥(USV)−1

∥∥∥ =
∥∥V S−1UT

∥∥ =
∥∥S−1

∥∥ = σn, since

S =



1
σ1 1

σ2
·
·
·

1
σn

 and σ1 ≥ σ2 ≥ · · · ≥ σn.

In the end κ(A) = ‖A‖
‖A−1‖ = σ1

σn

Notice that we cannot use the other definition κ(A) = ‖A‖
∥∥A−1

∥∥, since A−1

does not exist for a non-square A. However, one can verify that ‖A‖ ·
∥∥A†

∥∥ =
σ1
σn

= κ(A), where A† is the pseudo-inverse.

Fact 3.1.2. Let A ∈ M(n, m,R). The relative distance between A and the
closest singular matrix is computed as 1

κ(A) .

3.1. CONDITIONING 61

� Do you recall?

As stated in Eckart-Young theorem (Theorem 1.6.6), let A ∈
M(n, m,R) and let A = UΣV T be its singular value decomposition.
The closest matrix to A that has rank r = n − 1 is the solution of

min
rk(X)=n−1

∥∥∥A− Â
∥∥∥

F
:

Â =
(
U1 U2 · · · Un−1) ·


σ1

σ2
. . .

σn−1

 ·


V 1

V 2

...
V n−1



= U


σ1

σ2
. . .

σn−1
0

 · V T

Proof.

∥∥∥A− Â
∥∥∥ =

∥∥∥∥∥∥∥∥∥∥∥
U ·

(
σ1

σ2
. . .

σn−1
σn

−


σ1
σ2

. . .
σn−1

0


)
· V T

∥∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥U ·


0

. . .
0

σn

 · V T

∥∥∥∥∥∥∥∥∥
= σn

(3.1.2)

Thus,
∥∥A−Â

∥∥
‖A‖ = σn

σ1
= 1

κ(A) .

Proposition 3.1.2 states that the larger κ(A) the closest is A to singularity.
We analyzed the conditioning of linear systems, but the main problem we

want to study in this course is least squares problem.

3.1.2 Conditioning of least squares problem
Theorem 3.1.3 (Trefethen, Bau, Theorem 18.1). Let us be given a matrix
A ∈ M(m, n,R) with full column rank and a vector b ∈ Rm. Consider the

62 CHAPTER 3. CONDITIONING AND STABILITY

minimum problem
min

x∈Rn
f(x) = min

x∈Rn
‖Ax− b‖

The relative condition number of f with respect to the input b satisfies

κrel(f, b) ≤ κ(A)
cos θ

(3.1.3)

and the relative condition number of f with respect to A is such that

κrel(f, A) ≤ κ(A) + κ(A)2 tan θ, (3.1.4)

where θ is the angle such that cos θ = ‖Ax‖
‖b‖ .

Figure 3.4: A geometric idea of the meaning of the angle θ.

Observation 3.1.1.

Special case 1: θ ≈ 90◦ We can see from the figure that a big change of b
induces a big relative perturbation of Ax. No matter what the conditioning
of A is, a small (relative) perturbation in b can cause a huge (relative)
perturbation in Ax, see Figure 3.5(a).

Special case 2: θ ≈ 0◦ When b is almost in plane with Im(x). In this case
κrel(f, A) ≈ κ(A) and a big relative change in b does not impact much Ax,
see Figure 3.5(b).

General case: θ far from 0◦ and 90◦ In the more general case, κrel(f, A) ≈
κ(A)2.

3.2 Floating point numbers
Computers work with IEEE arithmetic, where floating point numbers are ex-
pressed in base-2 scientific (exponential) notation.

3.2. FLOATING POINT NUMBERS 63

(a) θ ≈ 90◦ (b) θ ≈ 0◦

Figure 3.5: Two different angles between b and the hyperplane.

double (64-bit numbers):

±1. 01001011101 . . . 101︸ ︷︷ ︸
52 binary digits

·2± 101...01︸ ︷︷ ︸
10 binary digits

.

We use 1 bit for the sign, 52 bits for the “mantissa” and 11 bits for the exponent
and its sign.
Some of these combinations of bits are reserved for special numbers, e.g. Inf
and NaN, -0.
This system is subject to approximation errors, exactly like the “usual” decimal
arithmetic: for example, if we do 1

3 = 0.33333 . . . and if we do 1
3 + 1

3 + 1
3 =

0.99999 . . . 6= 1.
Moreover, not all numbers are exactly representable, take x = 0.1dec =

0.00011bin. It is a periodic number when written in binary, hence we cannot
represent it exactly as a machine number, hence it should be rounded up to x̃,
the closest floating point number.

Notice that the precision of the numbers that can be stored in floating point
arithmetic is variable, in particular there are more numbers close to zero with
respect to those that are far from 0, see Figure 3.6.

Figure 3.6: We have 252 equispaced numbers between 1
2 and 1 and between 1 and

2, and 252 between 2 and 4 and so on and so forth, so we have the same number of
integers, although the interval is getting bigger and bigger.

Definition 3.2.1 (Error bound). On every machine, for each x ∈ ±[10−308, 10308],
there is an exactly representable number x̃ that satisfies the error bound, namely

64 CHAPTER 3. CONDITIONING AND STABILITY

it is closer to x than the constant u = 2−52 ≈ 10−16. Formally, |x̃−x|
|x| ≤ u. Equiv-

alently, x̃ = x · (1± δ), where |δ| ≤ u.

3.3 Stability of algorithms

In this lecture we will try to answer the question: “Is our algorithm going to
compute a good approximation of the solution, provided that all the operations
are performed with machine precision?”

The concept of stability is linked with the particular algorithm used.
Let us assume that we have the best possible algorithm that returns ỹ = f(x̃)

which is the best representation of f(x̃), then by definition we have

|ỹ − y|
|y|

≤ κrel(f, x) |x̃− x|
|x|

+ o(|x̃− x|
|x|

)

≤ κrel(f, x)u + o(u).

In practice we may ignore o(u), since it has order of magnitude greater than
2−16.

� Terminology

From now on, we will denote floating point operations with circled opera-
tors, such as �,⊕, where

a⊕ b = (a + b)(1 + δ), |δ| ≤ u ⇐⇒ |(a⊕ b)− (a + b)|
|a + b|

= δ

and
a� b = ab(1 + δ), |δ| ≤ u ⇐⇒ |(a� b)− ab|

|ab|
= δ

Example 3.3.1. We would like to compute the error on the function f : R3 → R

s.t.

f(a, b) = aT b = a1 · b1 + a2 · b2 + a3 · b3

3.3. STABILITY OF ALGORITHMS 65

Step1: computer result

ỹ = a1 � b1 ⊕ a2 � b2 ⊕ a3 � b3

=
[[

a1b1 · (1 + δ) + a2b2 · (1 + δ2)
]
· (1 + δ4) + a3b3 · (1 + δ3)

]
· (1 + δ5)

= a1b1 · (1 + δ1) · (1 + δ4) · (1 + δ5) + a2b2 · (1 + δ2) · (1 + δ4) · (1 + δ5)
+ a3b3 · (1 + δ3) · (1 + δ5)
= a1b1(1 + δ1 + δ4 + δ5 + O(u2))
+ a2b2 · (1 + δ1 + δ4 + δ5 + O(u2))
+ a3b3 · (1 + δ3 + δ5 + O(u2))
≈ a1b1(1 + δ1 + δ4 + δ5) + a2b2 · (1 + δ1 + δ4 + δ5) + a3b3 · (1 + δ3 + δ5)
= y + a1b1(δ1 + δ4 + δ5) + a2b2(δ1 + δ4 + δ5) + a3b3(δ3 + δ5)

Where O(u2) comes from the summation of δiδj, for some i, j and allows
us to do an approximation up to second order terms of precision.

Step2: abolute error

|ỹ − y| = |�y + a1b1(δ1 + δ4 + δ5) + a2b2 · (δ1 + δ4 + δ5) + a3b3 · (δ3 + δ5)− �y|
(1)

≤ |a1b1| · 3u + |a2b2| · 3u + |a3b3| · 2u

≤ (|a1b1|+ |a2b2|+ |a3b3|) · 3u

Where
(1)

≤ follows from the observation that |δi| ≤ u

Let us take a =
(
1 −1 0

)
and b =

106 + 1
106

1

, then

f(a, b) = 106 + 1− 106 + 1 = 2

while
|ỹ − y| = 106 + 1 + 106 + 1 = 2 · 106 + 2

Theorem 3.3.1. Let A ∈M(m, n,R) and let B ∈M(n, p,R), the matrix-matrix
product has an error bounded by∣∣C̃C

∣∣ ≤ n · |A| · |B|u + O(u2)

3.3.1 Backward stability
Notice that computing the error using this “forward” technique requires a lot
of computation also in the case of very simple algorithms. In order to simplify
things a little, Wilkinson’s trick (from the 60’s) may be used. The basic idea

66 CHAPTER 3. CONDITIONING AND STABILITY

of backward stability is to see the computer result as the exact output of an
algorithm run on a slightly perturbed input.

� Terminology

From now on we will decorate with ˜ floating point numbers, while we
will use ˆ for perturbed inputs.

Example 3.3.2. Let us resort the function of the previous example f : R3 → R

s.t.
f(a, b) = aT b = a1 · b1 + a2 · b2 + a3 · b3

where we can write the computed value as

ỹ = a1b̂1 + a2b̂2 + a3b̂3

where
b̂1 = b1(1 + δ1)(1 + δ4)(1 + δ5) = b1 + 3ub1 + o(u),
b̂2 = b2(1 + δ2)(1 + δ4)(1 + δ5) = b2 + 3ub2 + o(u),
b̂3 = b3(1 + δ3)(1 + δ5) = b3 + 2ub3 + o(u)

Let us compute the error on b̂i:∣∣∣b̂i − bi

∣∣∣ = |bi(1 + δ1)(1 + δ4)(1 + δ5)− bi|

= |bi(δ1 + δ4 + δ5)|
= |bi| · 3u

And the relative error is
∥∥b̂−b

∥∥
‖b‖ ≤ 3u + o(u).

Hence, the bound on the result:

‖ỹ − y‖
‖y‖

≤ κrel(inn. prod., b)

∥∥∥b̂− b
∥∥∥

‖b‖ ≤ κrel(inn. prod., b) · 3u

Notice that the theoretical bound is
‖ỹ − y‖
‖y‖

≤ κrel(inn. prod., b) · u

therefore the bound that we found is not bad.

Definition 3.3.1 (Backward stability of an algorithm). An algorithm that
computes y = f(x) is called backward stable if the computed output ỹ can be
written as ỹ = f(x̂), where x̂ = x + O(u ‖x‖) (exact function, perturbed input).

Observation 3.3.1. In real-life usage, this O() notation often hides polynomial
factors in the dimension n. Although this may look an illicit simplification, we
observe that these factors are much more harmless than the error that we could
make otherwise.

3.3. STABILITY OF ALGORITHMS 67

Theorem 3.3.2. Backward stable algorithms are as accurate as theoretically
possible (given the condition number of a problem), up to some factor that
depends only on the dimension (e.g., n, 2n2 + 18n, . . .).

Proof.
‖ŷ− y‖
‖y‖ ≤ κrel(f, x)‖x̃− x‖

‖x‖ = κrel(f, x)O(u),

while the best attainable accuracy is ‖ỹ−y‖
‖y‖ ≤ κrel(f, x)u.

We may ask ourselves if it’s possible to perturb the input in order to get ỹ
for every possible algorithm and the answer is no. Let us see a counterexample.

Example 3.3.3. Let us take the functionf : R3 →M(3,R) s.t.

f(a, b) = abT =

a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

 = M

Let us consider the machine computation

M̃ =

a1
a2
a3

� [b1 b2 b3
]

=

a1 � b1 a1 � b2 a1 � b3
a2 � b1 a2 � b2 a2 � b3
a3 � b1 a3 � b2 a3 � b3


We are looking for â and b̂ such that M̃ = âT · b̂, but it is impossible to

obtain M̃ as

â1
â2
â3

 · [b̂1 b̂2 b̂3
]

because the columns of M̃ are all multiples of

the same vector.

Backward stability of QR factorization

Theorem 3.3.3. Let A ∈M(m, n,R) and let Q ∈ O(m,R) be an Householder’s
reflector. The following holds

Q�A = QA + E

where ‖E‖ ≤ ‖A‖ ·O(u)

Corollary 3.3.4. As usual, when computing the backward stability, we want to
write the error as a perturbation of A:

Q�A = QA + E = Q · (A + F)︸ ︷︷ ︸
Â

where F = Q−1E = QT E and ‖F‖ ≤ ‖Q‖︸︷︷︸
=1

· ‖E‖ ≤ ‖A‖ ·O(u)

68 CHAPTER 3. CONDITIONING AND STABILITY

� Do you recall?

A generic step k ∈ N of the computation of the QR factorization of a
matrix has the following shape: Ik−1,k−1

Hk


︸ ︷︷ ︸

Qk

·


× × × × ×
0 × × × ×
0 0 × × ×
0 0 × × ×
0 0 × × ×


︸ ︷︷ ︸

Rk−1

=


× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 × ×


︸ ︷︷ ︸

Rk

Theorem 3.3.5. Each step of the QR factorization in backward stable.

Proof. The computed matrix R̃k is the exact result of applying the transformation
to

R̂k+1 = Qk �Rk

= QkRk + O(u) ‖Qk‖ ‖Rk‖
= QkRk + E, where ‖E‖ = O(u) ‖Qk‖ ‖Rk‖
= Qk · (Rk + F), where F = Qk

−1E

Hence
‖F‖ ≤

∥∥Qk
−1∥∥ ‖E‖ = O(u) ‖Qk‖︸ ︷︷ ︸

1

·
∥∥Qk

−1∥∥︸ ︷︷ ︸
1

· ‖Rk‖︸ ︷︷ ︸
‖A‖

·O(u) *= ‖A‖ ·O(u), thanks to Theorem 3.3.3. Notice that *= holds because
Rk−1 is obtained as product between matrix A and orthogonal matrices.

Theorem 3.3.6 (Backward stability of QR factorization). QR factorization is
backward stable: the computed Q̃R̃ are the exact result of the function fQR(Â),
where Â is such that

∥∥∥Â−A
∥∥∥ ≤ O(u) · ‖A‖.

Proof. At each step, the computed matrix R̃k is the exact result obtained starting
from a perturbed Â = A + F1 + F2 + . . . + Fk︸ ︷︷ ︸

errors at each step

, as stated in Theorem 3.3.5.

Provided that ‖Fi‖ ≤ ‖A‖ · O(u) we have the thesis ‖F1 + F2 + . . . + Fk‖ =
‖A‖ ·O(u).

J Mantra

Orthogonal transformations are the key for stability.

3.3. STABILITY OF ALGORITHMS 69

3.3.2 Stability of algorithms for least-squares problems
Let us see how various algorithms to solve LS problems behave with respect to
backward stability.

Least squares problem via QR

Step 1: Computing a thin QR (qr(A, 0);) → backward stable;
Step 2: (c = Q1’*b;)→ backward stable;
Step 3: (R1 \c;)→ backward stable;

Least squares problem via SVD : We never discussed how SVD is com-
puted, hence we state the following

Theorem 3.3.7. SVD it is a product of orthogonal matrices, hence all
the errors are of size O(u) · ‖A‖. In particular we get

‖x̃− x‖
‖x‖ ≤

(
κrel(f, A) + κrel(f, b)

)
·O(u)

Step 1: Computing a SVD (svd(A, 0);) → backward stable;
Step 2: (c = U’*b;)→ backward stable;
Step 3: (d = c ./ diag(S);)→ backward stable;
Step 4: (V*d;)→ backward stable;

Least squares problem via Normal Equations : As you might recall from
the comparison of the efficiency of algorithms for solving LS problems
(Table 2.1), this method does not work properly in the case of “almost
singular” matrices A. At this point, we have the theoretical knowledge to
fully understand what is happening:

Step 1: C = A’ * A; → C̃ = (A + E1)T · (A + E1)
Step 2: d = A’ * b; → d̃ = (A + E2)T · (b + e1). This is the first

problem, because it is not possible to have the same perturbation of A
(E1 = E2) obtained as backward stability of two different algorithms

Step 3: x = C \ d; → This implies that the error is ‖C‖ =
∥∥AT A

∥∥ =∥∥A2
∥∥ 6= ‖A‖ and this is in contrast with the definition of backward

stability, because ‖x̃−x‖
‖x‖ = κ(A)2u

Example 3.3.4. Let A ∈M(4, 3,R) s.t.

A =


1 1 2
1 2 3
3 1 4
1 2 3 + 10−8



70 CHAPTER 3. CONDITIONING AND STABILITY

We may observe that A is at distance 10−8 from a matrix without
full column rank, hence κ(A) ≈ 108. On this particular matrix A, the
conditioning on QR and SVD is κ(A) ·u ≈ 108, while the conditioning
of normal equations is κ(A)2 · u ≈ 100.

3.4 A posteriori checks
So far, we used a “a priori” bound, hence we computed the theoretical stability.
Another approach would be to use a “a posteriori” bound, by using the computed
value x̃ for assessing how good the result is.

Definition 3.4.1 (Residual). Let (P) be a problem and let x ∈ Rm be the
solution of that problem. Let x̃ be the computed solution of (P). We define
residual the value of the problem in x̃.

3.4.1 A posteriori check for linear systems
Definition 3.4.2 (Residual). Let A ∈ M(m,R), b ∈ Rm, and let x ∈ Rm be
the solution of Ax = b. Let x̃ be the computed solution of Ax = b. We define
residual

r = Ax̃− b

Theorem 3.4.1. Let A ∈M(m,R), b ∈ Rm, and let x ∈ Rm be the solution of
Ax = b and let r be the residual of the computed solution x̃. The following holds

O(u) ≈ ‖r‖
‖A‖ · ‖x‖

Proof. Provided that we solve Ax = b via a backward stable algorithm, obtaining
x̃, then

(A + E) · x̃ = b + f

with ‖E‖
‖A‖ = O(u) and ‖f‖

‖b‖ = O(u).
The norm of the residual is expressed as∥∥∥∥∥∥Ax̃− b︸ ︷︷ ︸

r

∥∥∥∥∥∥ = ‖f − Ex̃‖ ≤ ‖f‖+ ‖E‖ · ‖x̃‖ = O(u) · ‖b‖+ O(u) · ‖A‖ · ‖x̃‖

Let us isolate O(u) and we get

O(u) = ‖r‖
‖A‖ · ‖x̃‖+ ‖b‖

(1)

≥ ‖r‖
‖A‖ · (‖x̃‖+ ‖x‖)

(2)
≈ ‖r‖
‖A‖ · ‖x‖

3.4. A POSTERIORI CHECKS 71

where
(1)

≥ holds because b = Ax ⇒ ‖b‖ ≤ ‖A‖ · ‖x‖ and
(2)
≈ holds because ‖x̃‖

and ‖x‖ are very close to each-other.

Theorem 3.4.2. Let A ∈ M(m,R), b ∈ Rm, and let x ∈ Rm be the solution
of Ax = b.

For a given x̃, the relative error of x̃ is bounded by the conditioning of matrix
A times the ratio between the norm of the residual and the norm of b. Formally,

‖x− x̃‖
‖x‖ ≤ κ(A) ‖r‖

‖b‖ .

This theorem tells us that x̃ is “close to the solution” apart from a factor
which is the conditioning of matrix A.

Proof. Follows from the perturbation results for linear systems. The idea is that
x̃ is the exact solution of the perturbed system

Ax̃
*= b + r = b̃

Where *= follows from the definition of r and
∥∥̃b−b

∥∥
‖b‖ = ‖r‖

‖b‖ .
A relative perturbation of size r

b is amplified by κ(A).

It’s important to notice that also computing A� x	 b is an approximated
operation. We choose to simplify things and ignore this error.

3.4.2 A posteriori check for Least Squares Problems
We cannot use the same approach used with linear system “a posteriori” check,
because for A ∈M(m, n,R), with m� n and full column rank and b ∈ Rn the
quantity ‖Ax− b‖ is not small at all, indeed it could be as large as b, as shown
in Figure 3.7.

Figure 3.7: A can be as large as b if b is perfectly orthogonal to the hyperplane
identified by A.

Definition 3.4.3 (Backward Error). We term backward error the minimal
perturbation of inputs that produces an approximated output.

72 CHAPTER 3. CONDITIONING AND STABILITY

Scrivere meglio

Observation 3.4.1. If you solve LSP via QR ‖Ax− b‖ =
∥∥∥∥(R1x−Q1

T b

−Q2
T b

)∥∥∥∥.

We said that the entries in the second block are fixed irrespective of x, but we
could make the entries in the first block zero, by choosing x = R−1

1 QT b. This
information let us infer something about the values of the vectors in Figure 3.7,
in particular the minimum of the value that we can get is

∥∥Q2
T b
∥∥ = ‖Ax− b‖.

With some algebra we may also check that
∥∥Q1

T b
∥∥ = ‖Ax‖.

Since this is a minimum problem, we know that the gradient of the function
is small near the optimum value, hence

f(x) = 1
2‖Ax− b‖2 = 1

2(Ax− b)T ·(Ax−b) = 1
2(xT AT Ax−bT Ax−xT AT b+bT b)

∇f(x) = AT Ax−AT b
Let us define the residual r = ∇f(x), therefore x̃ solves

AT Ax̃−AT b− r = 0 (P2)

hence

‖x̃− x‖
x ≤ κrel(P2, AT b)·

∥∥AT b + r−AT b
∥∥

‖AT b‖ = κ(AT A)︸ ︷︷ ︸
‖AT A‖·

∥∥(AT A)−1
∥∥=(σ1/σ2)2

· ‖r‖
‖AT b‖

notice that
(

σ1
σn

)2
could be incredibly large.

Theorem 3.4.3.
∥∥x̃−x

∥∥
x ≤ (κ(A))2 ·

∥∥AT Ax−AT b
∥∥

‖AT b‖ . Although we might have
wanted to have the condition number of the problem, instead of the condition
number of A and this could lead to underestimating the error.

Another idea could be using as error the first entry of the vector obtained
via QR (namely R1

T x−Q1
T b), by imposing R1x = Q1

T b
We may observe that this is a truly backward stable measure:
given r =

∥∥R1
T x̃−Q1

T b
∥∥, there exists b̃ with

∥∥∥b̃− b
∥∥∥ = ‖r‖ such that x̃ is

the exact solution of min
∥∥∥Ax− b̃

∥∥∥.
We have proved the following

Fact 3.4.4. Let A ∈M(m, n,R), with m� n and full column rank and b ∈ Rn.
If we denote x ∈ Rn the solution of ‖Ax− b‖ and with x̃ ∈ Rn the computed
value, the following holds

‖x̃− x‖
‖x‖

≤ κ(A)
cos θ

· ‖r1‖
‖b‖

3.4. A POSTERIORI CHECKS 73

Proof. Let us apply the condition number bound on

• modified input: b→ b + Q1r1

• solution: x→ x̃

‖x̃− x‖
‖x‖ ≤ κrel(LS, b) ·

∥∥∥b̃− b
∥∥∥

‖b‖

= κrel(LS, b) · ‖b‖+ Q1r1 − b
‖b‖

(1)

≤ κ(A)
cos (θ) ·

‖r1‖︷ ︸︸ ︷
‖Q1r1‖
‖b‖

where
(1)

≤ follows from Equation (3.1.3)

Theorem 3.4.5. Let A = Q1R1 be a thin QR factorization. Let r1 = QT
1 (Ax̃−

b). Then, x̃ is the exact solution of the LS problem

min ‖Ax− (b + Q1r1)‖ ,

so the backward error of x̃ is ‖Q1r1‖ = ‖r1‖.

Proof. Idea: replay the solution of a LS problem with QR factorization, and
use Q1

T TQ1 = I. You will get in the first block R1x = Q1
T b + r1, i.e.,

Q1
T (Ax− b) = r1, which is verified by x̃.

‖Ay− (b + Q1r1)‖ =
∥∥QT · (Ay− b−Q1r1)

∥∥
=
∥∥∥∥(Q1

T

Q2
T

)
· (Ay− b−Q1r1)

∥∥∥∥
=
∥∥∥∥(R1y

0

)
−
(

Q1
T b

Q2
T b

)
−
(

r1
0

)∥∥∥∥
=
∥∥∥∥(R1y−Q1

T b− r1
−Q2

T b

)∥∥∥∥
where the first component of the last vector is 0 whenever we choose x̃ = y and
the second component does not depend on y.

74 CHAPTER 3. CONDITIONING AND STABILITY

Chapter 4

Linear Systems

4.1 LS: the task
In this lecture we address the problem of solving linear systems exactly.

� Do you recall?

Solving a linear system means for any given A ∈M(m,R), b ∈ Rm, find
x ∈ Rn such that

Ax = b

In this course we provide the following four ways of solving a linear system:
• Gaussian elimination;

• LU factorization;

• QR factorization;

• Cholesky factorization (specialized method for positive definite matrices)
Idea: AT A can be written as AT A = RT R, where R is a square, upper
triangular matrix.

Someone could observe that this subject has already been studied in the
numerical linear algebra course, but we are interested in computing the solution
to this problem quickly when the dimensions are large and the matrix A is
sparse.
Since the complexity of Gauss method is cubic, this algorithm is unfeasible for
large inputs.

Let us first discuss some real life examples, where the matrices are large and
sparse.
Local function on graphs: A local function on graphs is a function that

depend on few nearby vertices. This kind of functions lead to a sparse
adjacency matrix A, as can be observed in Figure 4.1;

75

76 CHAPTER 4. LINEAR SYSTEMS

Figure 4.1: A local function on graph.

Images: Take an m×m image and blur it (each pixel is obtained as the average of
its neighbours). T :M(m,R)→M(m,R) such that T (A)ij = 1

9 · (Ai−1j +
Ai−1j−1 + Ai−1j+1 + Aij + Aij−1 + Aij+1 + Ai+1j + Ai+1j−1 + Ai+1j+1).
T may be written as a matrix that maps all the m images to a set of m
blurred images and has the following shape T ∈M(m2,R) such that the
(i, j)-th row of T has exactly 9 entries with value 1

9 and all the others are
0. The non zero entries correspond to Ai−1j , . . . , Ai+1j+1;

KKT systems constrained optimization;

Engineering problem: To check stability of a bridge, it gets split into small
cells. It can be proven that the stress on each of these cells corresponds to
the force applied by the neighbours, as shown in Figure 4.2. In the end,
this local phenomenon may be represented by a sparse matrix.

Figure 4.2: Graphic idea of a bridge partitioned into small blocks

4.2. QR FACTORIZATION 77

� Something on Matlab . . .

Matlab allows to display sparse matrices in a visual-friendly way, via the
command spy(A). Other useful commands are the following

• nnz(A) display the non-zero entries of A

• The density of a matrix A can be computed as density = nnz(A)
/ (size(A) * size(A))

Moreover, Matlab efficiently stores sparse matrices storing only the couple
(pos, value) of non-zero entries (the so-called coordinate format). In order
to convert a sparse matrix into a regular matrix there is the command
full(A).

4.2 QR Factorization
Thanks to QR factorization, the matrix A can be written as A = QR, where
Q ∈ O(m,R) and R ∈ T (m,R). In this case x can be computed as

x = A−1b = R−1Q−1b

and the steps are the following

1. compute A = QR, complexity: 4/3m3 + O(m2)

2. compute c = Q−1b = QT b, complexity: O(m2)

3. compute x = R−1c via back-substitution, complexity: O(m2)

Hence the total cost is 4/3m3 + O(m2).

4.3 SVD Factorization
The same trick we used for QR factorization holds for SVD.

4.4 LU Factorization
Gaussian elimination can be seen as a factorization: A = LU . The intuition
is to proceed iteratively, multiplying each time for a new matrix, just like QR
factorization.

Since the idea of Gauss elimination is to add multiples of row 1 to all the
rows from 2 to m to kill off A(2 : end, 1) we have that:

78 CHAPTER 4. LINEAR SYSTEMS

Step 1:
1
−a2 1
−a3 1
−a4 1
−a5 1


︸ ︷︷ ︸

matrix L1


× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×


︸ ︷︷ ︸

matrix A

=


× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×
0 × × × ×


︸ ︷︷ ︸

matrix A1

Where the × is called pivot and L1 is such that

ak = (L1)k1 = (A)k1

(A)11
, k = 2, 3, . . . , m.

Step 2: let us multiply A1 (obtained at the previous step) by a matrix L2 that
has an “identity frame” and inside does the same that L1 was doing before.

1
1
−b3 1
−b4 1
−b5 1


︸ ︷︷ ︸

matrix L2


× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×
0 × × × ×


︸ ︷︷ ︸

matrix A1

=


× × × × ×
0 × × × ×
0 0 × × ×
0 0 × × ×
0 0 × × ×


︸ ︷︷ ︸

matrix A2

bk = (L2)k2 = (A1)k2
(A1)22

, k = 3, . . . , m.

Step 3: let us go on and
1

1
1
−c4 1
−c5 1


︸ ︷︷ ︸

matrix L3


× × × × ×
0 × × × ×
0 0 × × ×
0 0 × × ×
0 0 × × ×


︸ ︷︷ ︸

matrix A2

=


× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 × ×


︸ ︷︷ ︸

matrix A3

ck = (L3)k3 = (A2)k3
(A2)33

, k = 4, . . . , m.

Step 4: one more operation
1

1
1

1
−d5 1


︸ ︷︷ ︸

matrix L4


× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 × ×


︸ ︷︷ ︸

matrix A3

=


× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 0 ×


︸ ︷︷ ︸

matrix A4

4.4. LU FACTORIZATION 79

dk = (L4)k4 = (A3)k4
(A3)44

, k = 5, . . . , m.

In the generic case we have Lm−1 · Lm−2 · . . . · L1 ·A = U , where U is upper
triangular, or A = L−1

1 · L
−1
2 · . . . · L−1

m−1︸ ︷︷ ︸
=L

·U , with U upper triangular and L

lower triangular.

Theorem 4.4.1. Let A ∈M(m,R) such that we do not encounter zero pivots
in the algorithm. A admits a factorization A = LU , where L ∈ T (m,R) is lower
triangular with ones on its diagonal, and U ∈ T (m,R) is upper triangular.

Observation 4.4.1 (Stroke of luck). The product of the Li
−1’s (denoted as L)

can be computed for free, since the following holds:

[1
−a2 1
−a3 1
−a4 1
−a5 1

]−1

·

[1
1

−b3 1
−b4 1
−b5 1

]−1

·

[1
1

1
−c4 1
−c5 1

]−1

·

[1
1

1
1

−d5 1

]−1

=

 1
a2 1
a3 b3 1
a4 b4 c4 1
a5 b5 c5 d5 1



Algorithm 4.4.1 LU factorization, Matlab implementation.

1 function [L, U] = lu_factorization(A)
2 m = size(A, 1);
3 L = eye(m);
4 U = A;
5 for k = 1 : m - 1
6 % compute "multipliers"
7 L(k+1:end, k) = U(k+1:end, k) / U(k, k);
8 % update U
9 U(k+1:end, k) = 0;

10 U(k+1:end, k+1:end) = U(k+1:end, k+1:end) ...
11 - L(k+1:end, k) * U(k, k+1:end);
12 end

Fact 4.4.2. The computational complexity of LU factorization is

2
3m3 + O(m2)

Proof. The computational complexity of this algorithm is concentrated at lines
10, 11 where at the k-th iteration we need to perform 2 operations for each entry

80 CHAPTER 4. LINEAR SYSTEMS

of a (m− k)× (m− k) sub-matrix of U
×
0 ×
0 0 × . . . ×
...

...
... (m− k)

...
0 0 × . . . ×


The total complexity is 2(m− 1)2+2(m− 2)2+. . .+22+1 ≈ 2

(
m3

3 +O(m2)
)

.

An attentive reader may notice that the cost of LU factorization is half as much
as QR factorization.

The algorithm for computing a solution of the linear system would then be

• c = L−1b, solved through forward substitution

• x = U−1c, solved through backward substitution

� Something on Matlab . . .

Implementation of \ in Matlab: We consider important to remark
how the operator \ is implemented in Matlab and uses an “automatic
algorithm”:

• if A is triangular, back(for)ward substitution is used directly

• otherwise LU factorization is used.

Notice that there is not any check on the orthogonality of the matrix. It
seems odd, because in that case A−1 = AT , and hence it would be easy
to solve the system. The issue is that in order to find out that a matrix
is orthogonal we would need to compute AT A, which is too costly.

4.4.1 Stability of LU
A downside of this approach is that it’s not numerically stable. The intuition is
that the conditioning is bad whenever the matrix A has a very small pivot.

Let us see an example:

Example 4.4.1. Let A ∈M(2,R) such that

A =
[
10−30 1

1 1

]
=
[

1 0
1030 1

]
︸ ︷︷ ︸

matrix L

[
10−30 1

0 1− 1030

]
︸ ︷︷ ︸

matrix U

In this case the LU factorization of A produces two triangular matrices L, U
with norm much larger than ‖A‖.

4.4. LU FACTORIZATION 81

Partial pivoting

Luckily, we can circumvent this issue multiplying Lis by some permutation
matrices (which swap rows in order to have a s pivot the largest value on that
column), as follows

Lm−1Pm−1 . . . L2P2L1P1A = U

where a permutation matrix Pi has the following shape
I 0

0 1
1 0

I


Observation 4.4.2 (Stroke of luck 2). Thanks to another “stroke of luck” we
can reorder those factors:

Lm−1Pm−1 . . . L2P2L1P1 = L̂m−1L̂m−2 . . . L̂1Pm−1Pm−2 . . . P1

where L̂i is equal to a modified version of Li where the entries of the active
column are swapped just like Pi.

Fact 4.4.3. LU factorization is not backward stable.

Proof.

Ûk+1 = Lk � Uk

= LkUk + E where ‖E‖ = O(u) · ‖Lk‖ · ‖Uk‖
= Lk(Uk + F) where F = Lk

−1E

Hence
‖F‖ ≤

∥∥L1
−1∥∥ · ‖E‖ = O(u) · ‖Lk‖ ·

∥∥Lk
−1∥∥ · ‖Uk‖

We can now introduce the following

Theorem 4.4.4. Let A ∈M(m,R). A admits a factorization A = PLU , where
P is a permutation matrix, L ∈ T (m,R) is lower triangular with ones on its
diagonal, and U ∈ T (m,R) is upper triangular.

It goes without saying that there is an overhead to performing partial pivoting
during LU factorization and its cost is O(m2).
Notice that P is orthogonal (P −1 = P T).
In the pivoting case the algorithm is

• c = Pb

• d = L−1c, through forward substitution

82 CHAPTER 4. LINEAR SYSTEMS

• x = U−1d, through back substitution

Notice that LU factorization cannot be used to solve Least Squares Problem,
because ‖Ax− b‖ 6=

∥∥L−1(Ax− b)
∥∥.

Although the elements of the active column of each Li are bounded by 1
(because (Li)ki = −Aki/Aii where Aii is chosen as the largest element of the i-th
column of A) there is a worst case scenario in which ‖U‖ ≈ 2m · ‖A‖. Luckily,
this worst case scenario is not statistically relevant in practice.

4.4.2 Gaussian elimination on sparse matrices
Given a sparse matrix

A =



× × × × ×
× × × ×

× × × × ×
× × ×
× × × ×

× × × ×
× × × ×
× × × ×
× × × ×


Gaussian elimination causes some fill-in, due to the sum of a multiple of the

first row, which has non zero entries in different positions:

× × × × ×
× × × ×

× × × × ×
× × ×
× × × ×

× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

matrix A

→



× × × × ×
× × × ×

0 × × × × × × ×
0 × × × × × ×
× × × ×

0 × × × × × ×
0 × × × × × ×
0 × × × × × ×
0 × × × × × ×


︸ ︷︷ ︸

matrix A1

We may observe that the computational complexity of sparse LU is linear in
the number of non zero entries of the final matrix, obtained by the algorithm,
which is possibly much larger than the number of non zeros in A.

How to circumvent this problem? At each step we may use as pivot row
the most sparse one. This computation may be done in a more sofisticate way,
considering the “relative” position of non zeros between couples of rows.

Because of this trade-off the choice is made in relation to the needs of the
implementation. We won’t study any algorithm that deals with sparse matrices,
since they are very complicated and make use of heuristics.

There are some lucky cases in which the fill-in is almost none, for example
a matrix that only has 5 diagonals which entries are different from 0 (called

4.4. LU FACTORIZATION 83

tridiagonal). In this particular case L is tridiagonal and lower triangular and
U is tridiagonal and upper triangular, as shown below.

A =



× × × 0 0 0 · · · 0
× × × × 0 0 · · · 0
× × × × × 0 · · · 0

0 × × × × ×
...

... 0
0 0 0 · · · × × × ×
0 0 0 · · · × × × ×
0 0 0 · · · 0 × × ×



L =



×
× ×
× × ×

.
× × ×

× × ×
× × ×


U =



× × ×
× × ×
× × ×

.
× × ×

× × ×
× ×


Observation 4.4.3. We should remark that if we are interested in high-performance
computing we need to pay attention to the blocking, because we go from vector-
vector operation to matrix-matrix operation and some of these operations may be
performed more efficiently. Parallel/multithreaded implementations are available
by means of parallel libraries for Matlab.

4.4.3 Gaussian elimination on symmetric matrices

� Do you recall?

In Gaussian elimination we had A and we multiplied it by L1 in order to
get a new matrix with a big chunk of 0s in the first column

1
× 1
× 1
× 1
× 1


︸ ︷︷ ︸

matrix L1


× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×


︸ ︷︷ ︸

matrix A

=


× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×
0 × × × ×


︸ ︷︷ ︸

matrix A1

Let us consider an upgrade of Gaussian elimination in the case of A ∈ S(m,R).

84 CHAPTER 4. LINEAR SYSTEMS

Let us see what happens if we multiply L1A on the right by the transpose of
L1:

(L1AL1
T)T = (L1

T)T
AT L1

T = L1AL1
T ∈ S(m,R)

Rimpicciolire le matrici in larghezza per farcele entrare

Step 1:
1
−a1 1
−a2 1
−a3 1
−a4 1


︸ ︷︷ ︸

matrix L1


× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×


︸ ︷︷ ︸

matrix A


1 −a1 −a2 −a3 −a4

1
1

1
1


︸ ︷︷ ︸

matrix L1T

=


× 0 0 0 0
0 × × × ×
0 × × × ×
0 × × × ×
0 × × × ×


︸ ︷︷ ︸

matrix A1

Step 2:
1

1
−b1 1
−b2 1
−b3 1


︸ ︷︷ ︸

matrix L2


× 0 0 0 0
0 × × × ×
0 × × × ×
0 × × × ×
0 × × × ×


︸ ︷︷ ︸

matrixA1


1

1 −b1 −b2 −b3
1

1
1


︸ ︷︷ ︸

matrix L2T

=


× 0 0 0 0
0 × 0 0 0
0 0 × × ×
0 0 × × ×
0 0 × × ×


︸ ︷︷ ︸

matrix A2

Step m:
Lm−1 · Lm−2 · . . . · L1 ·A · L1

T · . . . · LT
m−2 · LT

m−1 = D,

where D is diagonal, or

A = L1 · L2 · . . . · Lm−1︸ ︷︷ ︸
L

·D · LT
m−1 · . . . · LT

2 · LT
1︸ ︷︷ ︸

LT

= L ·D · LT .

Observation 4.4.4 (Stroke of luck). Notice that the stroke of luck of Observa-
tion 4.4.1 holds in this case too, hence we pay nothing to compute both matrices
L and LT .

[1
−a1 1
−a2 1
−a3 1
−a4 1

]
·

[1
1

−b1 1
−b2 1
−b3 1

]
·

[1
1

1
−c1 1
−c2 1

]
·

[1
1

1
1

−d1 1

]
=

 1
a1 1
a2 b1 1
a3 b2 c1 1
a4 b3 c2 d1 1


Theorem 4.4.5 (Symmetric Gaussian elimination). Let A ∈ S(m,R) such
that during Gaussian elimination we don’t encounter any 0 pivot. A admits a
factorization A = LDLT , where L ∈ T (m,R) is lower triangular with ones on
its diagonal, and D ∈ D(m,R).

A Matlab implementation of symmetric Gaussian elimination is shown in
Algorithm 4.4.2.

4.4. LU FACTORIZATION 85

Algorithm 4.4.2 Symmetric Gaussian factorization, Matlab implementation.

1 function [L, D] = ldl_factorization(A)
2 m = size(A, 1);
3 L = eye(m);
4 D = zeros(m);
5 for k = 1:m-1
6 D(k, k) = A(k, k);
7 L(k+1:end, k) = A(k+1:end, k) / A(k, k);
8 A(k+1:end, k+1:end) = A(k+1:end, k+1:end) ...
9 - L(k+1:end, k) * A(k, k+1:end);

10 end
11 D(m, m) = A(m, m);

Notice that it is possible to make an optimization of this algorithm: since A
is supposed to be symmetric, we only need to update the lower triangular part of
A, since the rest is mirrored by symmetry, hence the computational complexity
is half that of Gaussian elimination, namely 1

3 m3 + O(m2).

This algorithm is not backward stable, exactly like the one on non symmetric
matrices. Pivoting may be performed in order to improve stability. It comes
without saying that the row swap should be done consistently on the columns
to preserve symmetry. This is performed by permuting rows and columns of A,
that means swapping elements on the diagonal. In particular, at each step, we
work on a 2× 2 block diagonal matrix, hence

D =



0 ×
× 0 0

. . .
0 0 ×

× 0



Of course there are some matrices (like the ones with all 0s on the diagonal)
that cannot be “pivoted”. There are workarounds, as splitting matrices into
blocks. As an example, Matlab’s [L, D, P] = ldl(A) produces matrices such
that P T AP = LDLT , where D is not diagonal, but it has 2× 2 blocks on the
diagonal.

86 CHAPTER 4. LINEAR SYSTEMS

� Do you recall?

A matrix A ∈M(m,R) is said to be positive definite if all its eigenvalues
are strictly positive. Formally, A is positive definite if

∀z 6= 0 ∈ Rm zT Az > 0

One can prove that on positive definite matrices we do not need to divide by
0, while performing symmetric Gaussian elimination and this is proved by the
following

Lemma 4.4.6. In the context of positive definite matrices the following holds:

1. Let A be a symmetric matrix. A is positive definite if and only if MAMT

is positive definite, for some invertible M ∈ GL(m,R). Formally,

∀A ∈ S(m,R) s.t. A�0⇔ ∃M ∈ GL(m,R) s.t. MAMT�0

2. Let A a symmetric positive definite matrix such that A =
[

A11 A12
A21 A22

]
, then

A11 and A22 are positive definite too. Formally,

∀A ∈ S(m,R) s.t. A�0 and A =
[

A11 A12
A21 A22

]
⇒ A11�0 and A22�0

Proof.

1.

⇒) A ∈ S(m,R) and A�0 =⇒MAMT ∈ S(m,R) and MAMT�0.
Take z ∈ Rm, z 6= 0 zT MAMT z = yT Ay > 0, where we performed a
variable change y = MT z. Notice that y 6= 0 because M is invertible
(and ker(M) = {0}). The symmetry of the matrix MAMT follows
from (MAMT)T = MT T

AT MT = MAMT ;
⇐) MAMT ∈ S(m,R) and MAMT�0 =⇒ A ∈ S(m,R) and A�0.

This proof follows from the previous arrow, where the substitution is
z = M−1y.

2. A =
[

A11 A12
A21 A22

]
positive definite =⇒ A11 and A22 are positive definite too.

Since A is positive definite, its scalar product is greater than zero with all
the vectors in Rm.

A11) Let us take z = [z1
0].

[z1
T 0] ·

[
A11 A12
A21 A22

]
· [z1

0] = z1
T A11z1 > 0, ∀z1 ∈ RsizeofA11

A22) Let us take z =
[0

z2

]
.

[0 z2
T] ·

[
A11 A12
A21 A22

]
·
[0

z2

]
= z2

T A22z2 > 0, ∀z2 ∈ RsizeofA22

4.4. LU FACTORIZATION 87

Corollary 4.4.7. Let A ∈ S(n,R) such that A is positive definite. When
computing the LDLT factorization of A, at each step we have Dkk > 0, hence
we need no pivoting technique.

Proof. From the first point of Lemma 4.4.6 we have that, since A�0, L1AL1
T

is positive definite. Thanks to the second point of the same lemma we have

L1AL1
T =


× 0 0 0 0
0 × × × ×
0 × × × ×
0 × × × ×
0 × × × ×

 and so the first and the second diagonal blocks

are positive definite (D11 > 0 and D22�0).
This reasoning can be done recursively, hence the diagonal of L1AL1

T is
positive.

Theorem 4.4.8. The cost of LDL factorization with pivoting is 1
3 m3 + O(m2)

(half of LU).

4.4.4 Cholesky Factorization
Definition 4.4.1 (Cholesky Factorization). Let A ∈ S(m,R) such that A � 0.
It can be factored as

A = RT R

where R ∈ T (m,R) is upper triangular and it as positive elements on the
diagonal.

If we rewrite the diagonal matrix of the Gaussian elimination D as product
of D1/2 times itself we get:

D =


d11

d22
. . .

dmm



=


√

d11 √
d22

. . . √
dmm


︸ ︷︷ ︸

matrix D1/2

·


√

d11 √
d22

. . . √
dmm


︸ ︷︷ ︸

matrix D1/2

Therefore the LDL factorization may be rewritten as follows

A = LDLT = LD1/2(D1/2T
LT) = CCT ,

88 CHAPTER 4. LINEAR SYSTEMS

where D1/2 = diag(D1/2
11 , D

1/2
22 , . . . , D

1/2
mm), and C is lower triangular (but not

anymore with ones on the diagonal).
Notice that it is guaranteed that the square root of elements on the diagonal

exists because they are all positive, as proved by Corollary 4.4.7.

� Something on Matlab . . .

In Matlab the Cholesky factorization of a positive definite matrix is
performed by the function chol(A); and returns CT .

Observation 4.4.5. We will not discuss stability further, but Cholesky is always
backward stable even without pivoting (since ‖C‖ = ‖A‖1/2).

Observation 4.4.6. In a sparse matrix, we can choose the (symmetric) permu-
tation with the only goal of reducing fill-in. The same considerations about LU
factorization hold in this case too.

� Note

We encountered Cholesky factorization in discussing how to solve LSP
with QR factorization. Let A ∈M(m, n,R) with m ≥ n. Thanks to thin
QR factorization, we can write A = Q1R1 such that

AT A = (Q1R1)T
Q1R1 = R1

T R1

where R1
T is lower triangular and R1 is upper triangular.

4.4.5 Wrap up
We designed a variant of LU factorization for the various kinds of matrices A:

• If A is positive definite, Cholesky factorization (cost: 1/3m3 + O(m2));

• If A is symmetric, LDL factorization (cost: 1/3m3 + O(m2));

• Otherwise, standard LU factorization (cost: 2/3m3 + O(m2)).

In any case, if A is sparse (namely, with density < 0.4), it is important to
consider sparse variants, but they suffer from the so-called fill-in.

4.5 Krylov’s subspace methods
This kind of methods are useful for large matrices, whenever we run out of RAM.

4.5. KRYLOV’S SUBSPACE METHODS 89

Example 4.5.1. Let us consider the optimization problem min 1
2 xT Ax + bT x,

where A � 0. We know that the solution to this problem is x = A−1b. As
discussed in Optimization course, we can solve this problem via a gradient
descent-type method. We know that if f is strictly convex there exists a unique
minimum. Let us start from x0 = 0.

Step 1:
x0 = 0
∇f(x0) = −b;

Step 2:
x1 = some multiple of ∇f(x0) ∈ Span(∇f(x0)) ≡ some multiple of b
∈ Span(b)
∇f(x1) = Ax1 − b

Step 3:
x2 = mult. of x1 + mul. of ∇f(x1) + mult. of x0 = αb + βAb , x2 ∈
Span(Ab, b);

Step 4:
x3 = mult. of x2+ mult. of ∇f(x2)+ previous iterates · · ·
Ax2 − b = A · (αb + βAb) − b = αAb + βA2b − b ∈ span(b, Ab, A2b),
where α, β ∈ R;

Step 5: x4 ∈ Span(b, Ab, A2b, A3b).

Definition 4.5.1 (Krylov subspace). Let A ∈M(m,R) and let b ∈ Rm. The
Krylov subspace of index n is

Kn(A, b) = Span(b, Ab, A2b, . . . , An−1b)

Equivalently,

v ∈ Kn(A, b) ⇐⇒ ∃α1, . . . , αn−1 ∈ R s.t. v = α0b+α1Ab+α2A2b+· · ·+αn−1An−1b

Equivalently, it is the set of all polynomials p of degree such that deg(p) ≤ n− 1

(α0 + α1A + α2A2 + · · ·+ αn−1An−1)b = p(A)b

Equivalently,{
v : v = V w, where w ∈ Rm and V =

b Ab · · · An−1b

}

Fact 4.5.1 (Properties of Krylov’s subspaces).
The following holds:

1. v, w ∈ Kn(A, b)⇒ αv + βw ∈ Kn(A, b);

90 CHAPTER 4. LINEAR SYSTEMS

2. v ∈ Kn(A, b)⇒ Av ∈ Kn+1(A, b).
Proof. Let us take v = α0b + · · · + αn−1b, then Av = A(α0b + · · · +
αn−1b) = α0Ab + · · ·+ αn−1Anb ∈ Kn+1(A, b);

3. dim(Kn(A, b)) ≤ n. It is exactly n iff b, Ab, A2b, . . . , An−1b are linearly
independent.
Proof. Let us assume dim(Kn(A, b)) ≤ n. In the second point, if An−1 was
really necessary αn−1 6= 0 or v ∈ Kn(A, b), v /∈ Kn−1(A, b), equivalently
then Anb is really necessary to write Av, i.e. Av ∈ Kn+1(A, b) but
Av /∈ Kn(A, b).

4. dim(K1(A, b)) < dim(K2(A, b)) < · · · < dim(Knmax
(A, b)) = dim(Knmax+1(A, b)) =

· · ·.

Notice that Kn(A, b) is the set of vectors that we can reach from b with two
operations:

• multiply a vector by matrix A;

• take a linear combination of the vectors obtained.

Idea of the algorithm: first compute the basis of Kn(A, b) = Span(b, Ab, . . . , An−1b),
then look for the best solution inside this subspace, namely find the best
xn ∈ Kn(A, b) such that

xn = V y = by1+Aby2+. . .+An−1byn and min
xn∈Kn(A,b)

‖Axn − b‖ = min
y inRm

‖AV y− b‖

The method for solving linear systems based on Krylov’s subspace hinges on a
sort of “oracle function” that performs the matrix-vector multiplication without
properly knowing A. Such oracle function may be optimized using the sparse
structure of A.

Algorithm 4.5.1 Matlab code for oracle function.

1 function [x] = compute_product_with_A(z)
2 x = zeros(size(A, 1), 1);
3 x[i:end] = A[i:end, :] * z;
4 end

Fact 4.5.2. Let A ∈M(m,R) and let z ∈ Rm. The cost of multiplying A times
z is O(nnz(A)), where nnz(A) is the number of non zero entries of A.

It goes without saying that if A is sparse, these algorithms become particularly
fast. Moreover, if we somehow have matrices that are not really sparse, but for
which there exists a clever implementation of the matrix-vector product, this
class of algorithms will give good results.

4.6. ARNOLDI ALGORITHM 91

Notice that V =
(
b Ab · · · An−1b

)
is a bad basis, because it is ill conditioned.

This is due to the fact that, in general, powers of the form A∗b “converge” (tend
to be aligned) to a certain (dominant) eigenvector fo A.
A first way of overcoming this issue would be taking the QR factorization of(
V 0

)
:
(
Q1 R1

)
and use Q1 as a basis of Kn(A, b). This is not enough,

because V is already ill-conditioned, hence storing it in memory will already
alter Kn(A, b) a lot.

4.6 Arnoldi algorithm

� Do you recall?

The Gram-Schmidt algorithm, given a matrix W ∈M(m, n,R), such that
W =

(
w1 w2 . . . wn

)
, computes an orthonormal basis for Im(W) =

Span(w1, w2, . . . , wn).

This algorithm resembles the Gram-Schmidt algorithm for linear algebra, where
we take Q with orthonormal columns Q =

(
q1 q2 hdots qn

)
∈M(m, n,R),

whose columns are a basis of Kn(A, b).
The idea behind this algorithm is to build an orthogonal basis of Kn(A, b)
incrementally: at a generic step, it takes an orthogonal basis for Kn(A, b) and
adds a vector to produce one of Kn+1(A, b).

Step 1: K1(A, b) = Span(b), q1 = b
‖b‖

Generic j-th step: produce a vector w, belonging to Kj+1(A, b) Kj(A, b),
namely w = Aqj

1. Compute βi = qi
T w for i = 1, . . . , j + 1

2. Compute qj+1 = w−q1β1−q2β2−...−qjβj

βj+1

Fact 4.6.1. Let A ∈M(m, n,R), let b ∈ Rn, and let w = q1β1 + q2β2 + · · ·+
qjβj + qj+1βj+1 ∈ Kj+1(A, b) Kj(A, b).

βi = qi
T w for i = 1, . . . , j + 1

and
qj+1 = w− q1β1 − q2β2 − . . .− qjβj

βj+1

Proof.

qi
T w = qi

T q1β1 + . . . + qi
T qjβj + qi

T qj+1βj+1 = qi
T qiβi = βi

The second part comes from inverting the formula of w.

92 CHAPTER 4. LINEAR SYSTEMS

Notice that we are assuming that at each step j the vector qj /∈ Kj−1(A, b).
An implementation of Arnoldi algorithm is shown in Algorithm 4.6.1.

Algorithm 4.6.1 Arnoldi algorithm Matlab implementation.

1 function Q = arnoldi(A, b, n)
2 Q = zeros(length(b), n); %will be filled in
3 H = zeros(n+1, m);
4 Q(:, 1) = b / norm(b);
5 for j = 1 : n
6 w = A * Q(:, j);
7 for i = 1:j
8 % not what we showed earlier here, but stabler
9 betai = Q(:, i)' * w;

10 w = w - betai * Q(:, i);
11 H(i, j) = betai;
12 end
13 nrm = norm(w);
14 H(j+1, j) = nrm;
15 Q(:, j+1) = w / nrm;
16 end

Notice that in the implementation we compute

βi = q1
T w

w← w− β1q1

β2 = q2
T w

w← w− β2q2

because it is more stable.

Fact 4.6.2. The complexity of Arnoldi algorithms is O(n · nnz(A) + m · n).

Proof.

• n− 1 products with A → O(n · nnx(A))

• n2

2 scalar products → O(m · n2)

• n2

2 linear combinations of vectors → O(m · n2)

• norm

4.6. ARNOLDI ALGORITHM 93

4.6.1 Arnoldi as a factorization
Definition 4.6.1 (Hessemberg Matrix). Let H ∈ M(m,R) such that Hij =
0, ∀i > j + 1. H is called Hessemberg matrix.

H =


× × × ··· ×
× × × ··· ×
0 × × ··· ×
0 0 × ··· ×
...

... ...
...

0 0 ··· 0 ×


Fact 4.6.3. Let A ∈M(m, n,R) and let b ∈ Rn.

AQn = Qn+1H

where Qn ∈M(m, n,R), Qn+1 ∈M(m, n + 1,R) and H ∈M(n + 1, n,R) such
that

Qn =

q1 q2 . . . qn

 , Qn+1 =

q1 q2 . . . qn+1

 , H =


β1,1 β1,2 β1,3 ··· β1,n

β2,1 β2,2 β2,3 ··· β2,n

0 β3,2 β3,3 ··· β3,n

0 0 β4,3 ··· β4,n

...
... ...

...
0 0 ··· 0 βn+1,n


Proof. At step j

w = Aqj = β1,jq1 + β2,jq2 + · · ·+ βj,jqj + βj+1,jqj+1 = Qn+1



β1,j

β2,j

...
βj+1,j

0
0
...
0


If we collect all qj in matrix Qn and we get the thesis.

Corollary 4.6.4. Let A ∈M(m, n,R) and let b ∈ Rn.

AQn =

Qn qn+1

 ·
 Hn

0 · · · 0 βn+1,n

 = QnHn + qn+1βn+1,ne1

where Qn ∈M(m, n,R), H ∈M(n, n,R) is an Hessemberg matrix.

Fact 4.6.5. For every matrix A ∈M(m, n,R) there exists an Arnoldi factoriza-
tion.

An attentive reader may have noticed that AQn = Qn+1H does not allow
a factorization of the matrix A, because Qn is not invertible, because it is tall,
thin hence it does not have an inverse.

94 CHAPTER 4. LINEAR SYSTEMS

4.6.2 Arnoldi Termination
Definition 4.6.2 (Arnoldi breakdown). Let A ∈ M(m, n,R) and let b ∈ Rn.
Let us assume that we arrived at step j ≤ m such that q1, q2, . . . , qj are a basis
of Kj+1(A, b) ⊆ Rm. We say that we are encountering Arnoldi breakdown
and

Aqj = β1q1 + · · ·+ βmqj + 0

(without any additional term βj+1qj+1)

Fact 4.6.6. Let A ∈M(m, n,R) and let b ∈ Rn. If we get to m without earlier
breakdown

A = QmHQm
T

where Qm ∈ O(m,R) and Hm ∈M(m,R) is a Hessemberg matrix.

Fact 4.6.7. The QR factorization of an Hessemberg matrix H ∈M(m,R) can
be computed in O(m2) operations.

Thanks to the combination of Proposition 4.6.6 and Proposition 4.6.7, we
can easily invert matrix A and get a solution x.

Theorem 4.6.8 (Lucky breakdown). ‘Lucky breakdown’: if it happens at an
early step, we can solve linear systems (or compute some eigenvalues) cheaply:
it costs n times a matrix-vector products + O(mn2).

Theorem 4.6.9. Let us assume we have a lucky breakdown at step n, then

• for every couple λ, v eigenpair of Hn the couple λ, Qnv = w is an eigenpair
of A. Formally,

Hnv = λv⇒ Aw = λw where w = Qnv

• the solution of Ax = b is

x = Qn ‖b‖H−1
n e1

Proof.

A =
[

Qn Q̂

] [
Hn L
0 M

][
Qn Q̂

]T

•
AQn = QnHn + qn+1βn+1,nen

T *= QnHn

where *= holds since we have a breakdown at step n. Hence we have

AQnv = QnHnv = Qnλv = λQnv

4.6. ARNOLDI ALGORITHM 95

•

x = A−1b = QmH−1Qm
T b = QmH−1


q1

T

q2
T

...
qm

T

b (1)= QmH−1


‖b‖

0
...
0


=
[

Qn Q̂

] [
Hn

−1 −Hn
−1LM−1

0 M−1

] [
‖b‖ e1

0

]

=
[

Qn Q̂

] [
‖b‖H−1

n e1
0

]
= Qn ‖b‖H−1

n e1.

� Something on Matlab . . .

In Matlab a nice way to plot eigenvalues is:

• ev = eig(A);

• plot(real(ev), image(ev), ’x’);

On the x axis, the real component of the eigenvalues, on the y axis the
complex component.

Notice that if b is an eigenvector of A, the breakdown happens already at n = 1.
Moreover, how to deal with a division by 0 in qn+1 = z

‖z‖? We need to
change the definition βn+1 = ‖z‖ = 0. At this point we do not get a basis of the
Krylov space anymore, but we can still go on as “nothing happened”, as long as
these vectors are orthonormal. We go on until the end we get

AQm = HmQm,

Fact 4.6.10. Even if no breakdown happens, the eigenpairs of Hn (λ, Qnv) are
often close to the eigenpairs of A (see Figure 4.3).

Definition 4.6.3 (Ritz vectors). The eigenvalues of Hn are called Ritz vectors
of A.

The Krylov’s space Qn looks a lot like the space generated by the first
n eigenvalues. If A is diagonalizable A = V ΛV −1, Ak = V ΛkV −1. Hence
Akb = V Λ V −1b︸ ︷︷ ︸

c

= V 1λ1
kc1 +. . .+V mλm

kcm. When k gets large, the dominant

eigenvalue λ1 dominates Akb gets very close to Span(V 1, . . . , V m).
What happens when there is no breakdown? After n steps of Arnoldi,

96 CHAPTER 4. LINEAR SYSTEMS

Figure 4.3: Indicated as a blue cross the eigenvalues of A, in red circles the eigenvalues
of H.

1. if Hnv = λv is an eigenpair of Hn. Qnv, λ is an approximation of an
eigenpair of A.

2. x̃ = QnHn
−1 ‖b‖ e1 is an approximation of the solution x of Ax = b

4.6.3 Stability of Arnoldi

Suppose Aw− λw = z, where ‖z‖ = ε. Then (A + E)w = λw for some small E,
such that Ew = z.

Let us define q = z
‖z‖ , E = wqT

‖z‖ , then

Ez = wqT

‖z‖ · z = wqT 1
‖z‖ · ‖z‖ · q = w

Then ‖E‖ = ‖w‖
‖z‖

We would like to check the backward stability, that means finding the exact
solution of a nearby problem. There is an exact eigenvector ŵ of A such that

‖ŵ−w‖
‖w‖ ≤ κ(eig.A) · ‖E‖

‖A‖

where κ(eig.A) is the condition number of the iegenvalue problem.
The eigenvalues of Hn are eigenvalues of a “nearby matrix” obtained by

4.6. ARNOLDI ALGORITHM 97

taking H̃m (result of the full process) and replacing (H̃m)n+1,n with zero.

H̃m =



× · · · × × × · · · · · · ×
× · · · × × × · · · · · · ×

0 . . . × ×
...

...
...

...
0 0 × × × · · · · · · ×

0 × · · · × ×
× · · · × ×

0 . . . × ×
0 0 × ×


→ Hm =



× · · · × × × · · · · · · ×
× · · · × × × · · · · · · ×

0 . . . × ×
...

...
...

...
0 0 × × × · · · · · · ×

× × · · · × ×
× · · · × ×

0 . . . × ×
0 0 × ×


We expect that this change does not lead to a significant change in the

eigenvalues, in other words, the eigenvalues of H̃m differ from the eigenvalues of
Hm by |hn+1,n|. Formally,

∥∥∥H̃m −Hm

∥∥∥ = hn+1,n.

4.6.4 Using Arnoldi for computing eigenvalues
Arnoldi’s method can be used for approximating the largest eigenvalues of a
large, sparse matrix A.

Fact 4.6.11. The space Kn(A, b) = span(b, Ab, . . . , An−1b) contains the right
“features” to represent the eigenvectors of A associated to the largest eigenvalues.

Proof. Let us take A diagonalizable: A = V ΛV −1. Then

Akb = (V ΛV −1) · . . . · (V ΛV −1)b = V ΛkV −1b

=

V 1 V 2 · · · V m

 ·


λ1
k

λ2
k

. . .
λm

k




c1
c2
...

cm


= V 1λk

1c1 + V 2λk
2c2 + · · ·+ V mλk

mcm

where c = V −1b.
Akb is a linear combination of the eigenvectors V i in which those with

largest |λi| are “more prominent”, in other words as k increases the components
involving the largest |λi|s grow faster.

Corollary 4.6.12. This also tells us that span(V 1, V 2, . . . , V m) (that are the
eigenvectors associated to largest eigenvalues in modulus) “represent well” Km(A, b) =
span(b, Ab, . . . , Am−1b).

Example 4.6.1. It is possible to build a counter-example, that shows that
sometimes it is crucial to reach the n-th step to have accurate eigenvalues. Let

98 CHAPTER 4. LINEAR SYSTEMS

A ∈M(m,R), such that A =



0 1
1 0

1 . . .
. . .

1 0


In this case the eigenvalues are 0 until the last iteration and they get the

correct value only at the last step.

� Something on Matlab . . .

The command [V, D] = eigs(A) does not work on sparse matrices A.
In this case we may run Arnoldi method and use the best values obtained
by Arnoldi: [V, D] = eigs(A, n), which computes approximations of
the top-n (largest in modulus) eigenvalues.
Notice that the Matlab “implementation” (the quotes are because the
Arnoldi method de facto is not implemented in Matlab) of the Arnoldi
method uses some tricks to converge fast.
It is possible to use the command eigs and pass to it an anonymous
(λ) function which computes the matrix-vector product and this is useful
when the matrix and the vector have a particular shape: f= @(x) A*x;

Lemma 4.6.13. Let A ∈ M(m,R) and let (λ1, v1), . . . , (λk, vk) be the eigen-
values/vectors of A. The following holds:

1. (λi + α, vi) are eigenvalues/vectors of A + αI;

2. (1
λi

, vi) are eigenvalues/vectors of A−1;

3. (λk
i , vi) are eigenvalues/vectors of Ak;

4. (1
λi−α , vi) are eigenvalues/vectors of (A− αI)−1

Proof. Let us omit the subscript i to ease notation:

1. (A + αI)v = Av + αv = λv + αv = (λ + α)v;

2. (λ−1v) is an eigenpair of A−1. We need to check that A−1v = λ−1v. If we
multiply by λA both sides: λ�A�

��A−1v = λAλ−1v⇔ λv = �λ�
�λ−1Av, which

is true by definition of eigenvalue/vector of A;

3. (by induction) A2v = A(Av) = A · λv = λAv = λλv = λ2v.

Fact 4.6.14. Arnoldi’s algorithm can be used for computing the smallest eigen-
values or also those that are closest to some value µ ∈ R.

4.6. ARNOLDI ALGORITHM 99

Proof. Thanks to the fourth item of Lemma 4.6.13, we get that if (λ, v) is an
eigenpair of A, then ((λ− µ)−1

, v) is an eigenpair of B = (A− µI)−1, since
(λ− µ−1) is large whenever λ and µ are close.

Following the same reasoning, we can compute the smallest eigenvalues of A
by taking the inverse of the largest eigenvalues of A−1, namely 1

λm
, . . . , 1

λ1
.

Notice that such matrix B is not sparse when A is sparse.

� Something on Matlab . . .

In Matlab, we can overcome the issue of matrix B not being sparse,
avoiding to compute it directly and providing an anonymous function that
computes the product Bz = A− µI−1z. The idea is to use factorizations:
A − µI = LU , then Bz = U−1(L−1z), that we can compute by back-
substitution: f = @(x) U \(L \x); Moreover, we can use:

• fl = eigs(A, 5, mu); for computing 5 eigenvalues closest to mu

• fl = eigs(A, 5, ’SM’); for computing 5 eigenvalues with small-
est magnitude

• fl = eigs(A, 5, ’LM’); for computing 5 eigenvalues with largest
magnitude

As final observation, the equivalents to Matlab’s eigs function are
scipy.linalgs.eigs for Python and arpack for C/C++ and Fortran.

4.6.5 GMRES: Using Arnoldi for solving linear systems
In previous sections, we already discussed that solving linear systems using
Arnoldi’s algorithm is easy in those cases in which there is lucky breakdown.

In the case of no breakdown, we can

• use x̃ = QnHn
−1 ‖b‖ e1 as an approximation of the solution x of Ax = b

• use the Generalized Minimum RESidual (GMRES) algorithm

In GMRES we want to approximate the solution of a large-scale linear system
of the form Ax = b by looking for “the closest thing to solution” inside Kn(A, b).

Fact 4.6.15. Let A ∈M(m, n,R) and let b ∈ Rm such that Arnoldi’s algorithm
does not lead to a breakdown. The solution of the minimum problem

min
x∈Kn(A,b)

‖Ax− b‖

is expressed as
x = Qn ·Hn

† ‖b‖ e1

100 CHAPTER 4. LINEAR SYSTEMS

Proof. Let us take x = Qny, then the minimum problem is equivalent to
min
y∈Rn

‖AQny− b‖.
We can perform some more reductions and:

‖AQny− b‖ (1)= ‖Qn+1Hny− b‖
(2)= ‖Qn+1Hny−Qn+1 ‖b‖ e1‖
= ‖Qn+1 · (Hny− ‖b‖ e1)‖
(3)= ‖Hny− ‖b‖ e1‖ .

where

• (1)= is due to Arnoldi’s equivalence AQn = Qn+1Hn, with Hn ∈M(n + 1, n)

• (2)= follows from

b = q1 ‖b‖ e1 =

q1 · · · qn

 ·

‖b‖

0
...
0



= Qn


‖b‖

0
...
0

 = Qne1 ‖b‖ = Qn+1e1 ‖b‖

• (3)= is explained by Proposition 1.4.1 (‖Qx‖ = ‖x‖ for Q orthogonal)

Corollary 4.6.16. The cost of Arnoldi’s algorithm for solving linear systems is
O(n3) and it does not depend on m.

Proof. qr(H) can be computed in O(n2) using the fact that H is ‘almost tri-
angular’ (Hessemberg matrix), although it is not a big optimization, since n
Arnoldi steps need to be computed first.

H =



× · · · × × × · · · · · · ×
× · · · × × × · · · · · · ×

0 . . . × ×
...

...
...

...
0 0 × × × · · · · · · ×

× × · · · × ×
× · · · × ×

0 0 . . . × ×
0 0 × ×



4.6. ARNOLDI ALGORITHM 101

An implementation of Arnoldi’s algorithm for solving linear systems is shown
in Algorithm 4.6.2.

Algorithm 4.6.2 Arnoldi’s algorithm for linear systems Matlab implementa-
tion.

1 function x = GMRES(A, b, n)
2 [Q, H] = arnoldi(A, b, n);
3 v = norm(b) + eye(n+1, 1);
4 y = H \ v;
5 x = Q(:, 1:n) * y;

Notice that instead of doing a QR at the end, we can compute QRs of
H1, H2, . . . and update them at each step. This allows us to compute at each
step a residual ‖Axn − b‖ that we can use as stopping criterion.

� Something on Matlab . . .

Matlab has gmres(A, b) (and Python has
scipy.sparse.linalg.gmres).

GMRES Convergence Speed

Fact 4.6.17. Let A ∈ M(m, n,R) and let b ∈ Rm. If A has k different
eigenvalues, there exists a polynomial p with degree ≤ k − 1 such that p(λi) =
1

λi
, ∀i = 1, . . . , m. Then GMRES recovers the exact solution in exactly k

iterations.

Proof. Let us resort the definition of Krylov’s space as a polynomial:

x ∈ Kn(A, b) ⇐⇒ x = α0b+α1Ab+. . .+αn−1An−1b = p(A)b, for some αi ∈ R

We can now bound the norm of the residual as

min
...
‖Ax− b‖ = min

...
‖A · p(A) · b− b‖

= min
...
‖(A · p(A)− I) · b‖

≤ min
...
‖(A · p(A)− I)‖ · ‖b‖

We are interested in putting to 0 the quantity ‖(A · p(A)− I)‖ and this is possible
iff

V

λ1p(λ1)− 1
. . .

λmp(λm)− 1

V −1 = 0

102 CHAPTER 4. LINEAR SYSTEMS

And this holds iff ∀i, λip(λi) − 1 = 0 ⇐⇒ p(λi) = 1
λi

. This is a polynomial
interpolation problem and it can be solved in k steps if k is the number of
distinct eigenvalues.

Notice that if A has more than k eigenvalues, but all of them are clustered
around k distinct values, then it is possible to find a polynomial that attains
p(λi) = 1

λi
,∀i = 1, . . . , m, hence the residual should be small:

‖rn‖ = ‖Axn − b‖ = min
p(x)

of degree ≤ n − 1

‖(Ap(A)− I)b‖

≤ ‖V ‖ · min
p(x)

of degree ≤ n − 1

∥∥∥∥∥∥∥
λ1p(λ1)− 1

. . .
λmp(λm)− 1


∥∥∥∥∥∥∥ · ‖V ‖ · ‖b‖

≤ ‖V ‖ ·
∥∥V −1∥∥ · ‖b‖ min

p(x)
of degree ≤ n − 1

max
i
‖λip(λi)− 1‖

Notice that Gauss operations on the rows of any matrix A (e.g. swapping
rows or scalar multiplication of a row) change its eigenvalues, without changing
the solution.

More generally, given P ∈M(n,R) we can change the problem Ax = b to
PAx = Pb. If P is invertible, the two systems have the same solution. However,
the spectrum of PA may be much better (in the above sense) than the spectrum
of A, leading to a faster solution with GMRES.

In particular, this happens if we manage to find P ≈ A−1. The perfect choice
would be P = A−1, but, of course, if we knew A−1 we would already have a way
to solve linear systems: just compute the matrix multiplication A−1b.

There are various techniques (often problem-dependent) to build effective
preconditioners P . One comes from approximate LU factorizations of A (in a
suitable sense); they are known as incomplete LU preconditioners.

4.6.6 MINRES: Modified Arnoldi for symmetric matrices
MINRES algorithm is based on two different modifications of GMRES:

• Improvement of Arnoldi step, due to the symmetry of matrix A (Lanczos)

• Improvement in solving LS problem (specialized GMRES)

Lanczos step

Fact 4.6.18. Let A ∈M(m,R). Then Hn ∈ S(n,R), ∀n ≤ m.

Proof. According to Arnoldi’s algorithm, we have that a vector w ∈ Kj+1(A, b) Kj(A, b)
is chosen as w = Aqj. The Hessemberg matrix is such that

Hij = βij = qi
T ·w = qi

T ·Aqj, ∀i, j

4.6. ARNOLDI ALGORITHM 103

Therefore
(Hij)T = qj

T AT qi = qj
T Aqj = Hij

Corollary 4.6.19. A symmetric Hessemberg matrix is also tridiagonal.
× ×
× × × 0

.
0 × × ×

× ×


Notice that a tridiagonal matrix requires a lot less space, hence we can save

a lot of computation in the Arnoldi loop, as shown Algorithm 4.6.3.

Algorithm 4.6.3 Lanczos algorithm Matlab implementation.

1 function Q = lanczos(A, b, n)
2 Q = zeros(length(b), n); %will be filled in
3 H = zeros(n+1, m);
4 Q(:, 1) = b / norm(b);
5 for j = 1 : n
6 w = A * Q(:, j);
7 for i = j-1:j %second modification
8 betai = Q(:, i)' * w;
9 w = w - betai * Q(:, i); %performed only on non-zero entries

10 H(i, j) = betai;
11 end
12 nrm = norm(w);
13 H(j+1, j) = nrm;
14 Q(:, j+1) = w / nrm;
15 end

Fact 4.6.20. The cost of Lanczos algorithm is n · nnz(A) + m · n.

Specialized GMRES

There is an extra saving when solving LS problem min ‖Hny− e1 · ‖b‖‖.

4.6.7 CG: Modified Arnoldi for positive definite matrices
Let us take A = AT ∈ M(m,R) such that A is positive definite. Then, we
can find the solution to Ax = b by minimizing the (strictly convex) function
f(x) = 1

2 xT Ax− bT x, which means imposing the gradient to 0:

104 CHAPTER 4. LINEAR SYSTEMS

∇f(x) = Ax− b = 0 ⇐⇒ Ax = b

Surprisingly, conjugate gradient on this problem can be interpreted as a
Krylov subspace method.

Definition 4.6.4 (A-orthogonal). Let A ∈ M(m,R) and let x, y ∈ Rm. The
vectors x, y are said to be A-orthogonal if xT Ay = 0.

Definition 4.6.5 (A-norm). Let A ∈M(m,R) positive definite and let x ∈ Rm.
We term A-norm the square root of the scalar product of x by A. Formally,

‖x‖A =
√

xT Ax, where xT Ax ≥ 0, because A � 0

The conjugate method algorithm (Algorithm 4.6.4) works by keeping track of
3 different vectors: xj the current iterate, rj = b−Axj = −∇f(xj) the residual
(that expresses how far we are from the solution), and the search direction dj .

Algorithm 4.6.4 Pseudocode for the conjugate gradient method.
1: procedure CG_iteration
2: x0 ← 0;
3: r0 ← b;
4: d0 ← b;
5: for j = 1:n do
6: αj ← rj−1

T rj−1
dj−1

T Adj−1
;

7: xj ← xj−1 + αjdj−1;
8: rj ← rj−1 − αjAdj−1;
9: βj ← rj

T rj
rj−1T rj−1

;
10: dj ← rj + βjdj−1;
11: end for
12: end procedure

Notice that the search direction (line 10) is modified adding a multiple of
the previous search direction (the so-called “deflection”) to the residual and βj

is chosen such that dj and dj−1 are A-orthogonal (formally, dj
T Adj−1 = 0).

Conversely, the next point is chosen in order to minimize the objective
function f(xj−1 + αjdk−1).

The update of the residual at line 9 follows from

rj = b−Axj = b−A · (xj−1 + αjdj−1) = b−Axj−1︸ ︷︷ ︸
rj−1

−αjdj−1

Theorem 4.6.21. The time complexity of Conjugate Gradient method is O(n +
n ·m) (that is less than GMRES) and the space complexity is constant (3 vectors).

Notice that it holds that rj, dj, and xj+1 ∈ Kj+1.

4.6. ARNOLDI ALGORITHM 105

Theorem 4.6.22. Kj(A, b) = span(x1, x2, . . . , xj) = span(d0, d1, . . . , dj−1) =
span(r0, r1, . . . , rj−1).

Theorem 4.6.23. The residuals {r0, r1, . . . , rj−1} are orthogonal and the search
directions are A-orthogonal. Formally,

rj
T rj = di

T Adj = 0, ∀ i < j

Proof. By induction: Let us assume we proved the thesis ri
T rj = 0 for j− 1 and

i = j − 2, . . . , 0.
We want to prove that

ri
T rj = ri

T · (rj−1 − αjAdj−1) = ri
T rj−1 − αjri

T Adj−1 = 0

Case i < j − 1:

• ri
T rj−1 = 0 hold by induction

• αjri
T Adj−1 = 0 holds, because ri ∈ Ki+1(A, b) = Span(d0, . . . , di).

Since i < j − 1 and the vectors spanning the Krylov’s space are
orthogonal we have the equality with 0 (that proves also the A-
orthogonality)

Case i = j − 1:

ri
T rj = 0 ⇐⇒ αj = rj−1

T rj−1

rj−1T Adj−1

and this holds because, since dj−1 = rj−1 + βj−1dj−2,

dj−1
T Adj−1 = (rj−1 + βj−1dj−1)T

Adj−1 = rj−1
T Adj−1+βj−1dj−1

T Adj−1︸ ︷︷ ︸
=0 ind.

s

and by definition αj = rj−1
T rj−1

dj−1
T Adj−1

Notice that the base of residuals is orthogonal but not orthonormal, we need
to re-scale it to obtain an orthonormal one, moreover, 1

‖ri‖ ri coincides (up to a
sign) with the qi obtained with Arnoldi.

Theorem 4.6.24. Let A ∈ M(m, n,R) and let b ∈ Rm. The solution of the
minimum problem

min
xn∈Kn(A,b)

‖Ax− b‖

is expressed as
xn = Qn ·Hn

−1 ‖b‖ e1

106 CHAPTER 4. LINEAR SYSTEMS

Proof. Saying that rn = b − Axn is orthogonal to all vectors of Kn(A, b) is
equivalent to requiring Qn

T · (b−Axn) = 0

Qn
T b = Qn

T A xn︸︷︷︸
Qnyn

m
‖b‖ e1 = Hnyn

In figure Figure 4.4 we can see a comparison between Arnoldi algorithm and
the conjugate gradient.

(a) Arnoldi (b) Conjugate gradient

Figure 4.4: Traditional orthogonality (Arnoldi) leads to the minimization of the
2-norm, while in the conjugate gradient we impose A-orthogonality and we get a good
approximation in several norms.

Theorem 4.6.25. In Conjugate Gradient method, xj is the best approximation
in Kj(A, b) of the exact (and unknown) solution x∗ to Ax∗ = b in Kj(A, b) in
the A-norm. Formally

‖xj − x∗‖2
A = (xj − x∗)T

A(xj − x∗)

Or, equivalently,

xj = arg min
x∈Kj(A,b)

1
2xT Ax + bT x + constant︸ ︷︷ ︸

f(x)

Proof. Let us prove that any z ∈ Kj(A, b) is further from x∗ then xj. We can
write z ∈ Kj(A, b) as xj + y, where xj, y ∈ Kj(A, b)

(x∗ − z)T
A(x∗ − z) = (x∗ − xj)T

A(x∗ − xj) + (x∗ − xj)T
Ay︸ ︷︷ ︸

0

+ yT A · (x∗ − xj)︸ ︷︷ ︸
0

+ yT Ay︸ ︷︷ ︸
≥0

> (x∗ − xj)T
A(x∗ − xj)

4.6. ARNOLDI ALGORITHM 107

Convergence of Conjugate Gradient

Notice that the Conjugate Gradient method is a monotonic algorithm.
Theorem 4.6.26. Let λmax, λmin be the maximum/minimum eigenvalue of A;
then, CG converges with rate

‖x∗ − xn‖ ≤

√λmax −
√

λmin√
λmax +

√
λmin︸ ︷︷ ︸

<1


n

‖x∗ − x0‖ .

We can rewrite it in terms of a more familiar quantity: for a positive definite
matrix, eigenvalues and singular values coincide, hence

√
λmax −

√
λmin√

λmax +
√

λmin
=
√

σ1 −
√

σm√
σ1 +√σm

=

√
σ1
σm
− 1√

σ1
σm

+ 1
=
√

κ(A)− 1√
κ(A) + 1

.

For large values of κ(A), this is approximately 1− 2√
κ(A)

, while if κ(A) ≈ 1 the

convergence speed is very high.
Theorem 4.6.27. As we already said for GMRES, if A has at most n different
eigenvalues, we can find a polynomial p of degree ≤ n−1 such that 1−p(λi)λi = 0
and therefore we have convergence in n steps.
Proof.

min
xn∈Kn(A,b)

‖x∗ − xn‖A = min
p(x)

of degree ≤ n − 1

‖x∗ − p(A)b‖A

= ‖x∗ − p(A)Ax∗‖A

≤ ‖I − p(A)A‖ · ‖x∗‖

But the quantity ‖I − p(A)A‖ is small, since

‖I − p(A)A‖ =

∥∥∥∥∥∥∥V ·

λ1p(λ1)− 1
. . .

λmp(λm)− 1

 · ∈ V

∥∥∥∥∥∥∥
Moreover, if the eigenvalues of A are ‘clustered’, one can construct polynomials
such that p(λ) attains the clusters, then fast convergence is implied.

� Something on Matlab . . .

In Matlab it is possible to write a permutation of the rows of A that
tries to put non-zero entries as close as possible to the diagonal: p =
syrcm(A);

	Mathematical background for Numerical Methods
	A brief journey in Linear Algebra
	Matrix multiplications: four flavors plus one of looking at it

	Formal definitions
	Solving Linear Systems
	Orthogonality
	Eigenvalues / Eigenvectors
	Eigenvector: what could possibly go wrong?

	Singular value decomposition (SVD)
	Properties of SVD

	Least Squares Problem
	LSP: the task
	NE direct method
	Background
	The closed formula

	QR Factorization
	Background
	Iterative algorithm via Householder's reflectors
	Matlab implementation
	QR factorization for tall-thin A
	QR factorization for LS problem

	SVD Factorization
	SVD for solving LS problems
	Behaviour in case of zeros as singular values
	Truncated SVD
	Tikhonov's regularization / ridge regression

	LSP: wrap up

	Conditioning And Stability
	Conditioning
	Conditioning of linear systems
	Conditioning of least squares problem

	Floating point numbers
	Stability of algorithms
	Backward stability
	Stability of algorithms for least-squares problems

	A posteriori checks
	A posteriori check for linear systems
	A posteriori check for Least Squares Problems

	Linear Systems
	LS: the task
	QR Factorization
	SVD Factorization
	LU Factorization
	Stability of LU
	Gaussian elimination on sparse matrices
	Gaussian elimination on symmetric matrices
	Cholesky Factorization
	Wrap up

	Krylov's subspace methods
	Arnoldi algorithm
	Arnoldi as a factorization
	Arnoldi Termination
	Stability of Arnoldi
	Using Arnoldi for computing eigenvalues
	GMRES: Using Arnoldi for solving linear systems
	MINRES: Modified Arnoldi for symmetric matrices
	CG: Modified Arnoldi for positive definite matrices

